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To Moore’ and Beyond...
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Contributions

e Cautionary note: no routing parasitics or PVT
variations are considered, so this is the ideal
case; when included it should only add to the
performance degradation in dual rail circuits.
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Performance Evaluation methodology

e Performance Metrics
— We have 2 different logic styles, CMOS & DDSLL
— Both are being scaled down from 65nm to 28nm
— Voltages are also scaled from nominal to nominal-0.5V

— Energy per operation, a relatively discriminant metric, is
used for performance comparison since it integrates the
total power over the time.
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Security evaluation methodology

e Security Metrics

= Simulated traces without any physical noise
L (X, N) = L™ (X, N)

e A multivariate power trace, I, reduced to univariate using PCA
[ =PCAQ)
e Using Mangard’s SNR,
A - /L
sNR = Yre(Eills))
— — " . :
E.(var;(L%))

Since we have noise-free traces, we compute only the numerator
corresponding to maximizing the signal,

var, (E;(L%))
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Simulation Parameters

e Simulation settings:

» Standard V, transistors (no forward or reverse biasing effects)

» From 1.2V nominal for 65nm LP and 1V nominal for 28nm FDSOI,
simulated up to nominal-500 mV

» 10MHz frequency of operation

» Input signal which transitions from 0-1,0-2,....0-N where N=255 for
security analysis

» Random 1000-bit input signal for £, calculation

» signal, S,-, and energy per operation, E,, W.r.t Vy, computed



Security analysis

Security vs Performance— PCA applied signal

e The x-axes represents the Energy per

operation ratio between CMOS & DDSLL, i.e
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e The y-axes represent the ratio of the PCA-
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Scaling Trends-CMOS/DDSLL- 65nm/28nm

Security vs Performance— PCA applied signal
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Scaling trends for CMOS - Security

Scaling trends for CMOS signal
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Conclusion

e Interest in DDSLL over CMOS vanishes as circuit sizes shrink.

» Because the impact of imbalanced capacitances increases at lower-
scaled technologies.

» We believe this trend hold true for other types of dual-rail logic styles
(like WDDL, DyCML, SABL)

e SNR reduction via signal reduction is likely to become increasingly
challenging.

» By contrast, scaling trends are positive for CMOS because of increase
in (intrinsic) noise.

e Designing efficient and noisy CMOS implementations is an
interesting research challenge

» Dual-rail logics may still be useful for other purposes such as ensuring
independence for masking
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