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To Moore’ and Beyond…

Courtesy: economist.com



Scaling – but Thinking security

 How is this scaling affecting security?

Courtesy: dailytech.com
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Hardware countermeasures
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 Filtering
 Equalization
 Decorrelation
 …

 Additive noise 
(algorithmic) 

 Randomization
 …

Thanks to dual-rail logic, we deal with signal

reduction and achieve lower signals compared to

CMOS…
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CMOS vs Dual-rail logic-Schematic & Costs

CMOS

DDSLL  XOR

 Full custom design 

 Larger area overhead

 Requires additional circuitry like buffers, 

precharge clocks and feedback loop

 Consumes slightly lesser power 

compared to CMOS

 Ideally equalized power consumption 

irrespective of manipulated data 

 Easier to implement

 Lesser area overhead

 Faster design time

 Can be implemented using 

standard cell libraries

 Vulnerable to side-channel attack

as power consumption is dependent 

on manipulated data 
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Circuit to 
protect

𝟏𝟑𝟎𝒏𝒎 𝟗𝟎𝒏𝒎 𝟔𝟓𝒏𝒎 𝟐𝟖𝒏𝒎

𝐷𝑜𝑒𝑠 𝑖𝑡 𝑔𝑒𝑡 𝒘𝒐𝒓𝒔𝒆
with scaling?

Imbalances in capacitances (dual-rail 
logics) lead to data dependencies which 

become exploitable [34,19,26,29,16]

DDSLL provided a security level of x10
compared to CMOS in 65nm [15] 
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CMOS 

compared to 
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CMOS 

compared 

to Dual rail 

at 28nm

AES 8-bit S-box
 CMOS styles implemented in 

65nm and 28nm
 DDSLL styled using BDD 

implemented in 65nm and 
28nm

Low power operation
 All S-boxes operated from 

nominal voltage of 
technology to (nominal 
voltage – 500 mV)

Scaling

Performance Metric
 Energy-per-operation

Security Metric
 SNR

Distinguisher
 Points-of-Interest 
 (PCA and Maximum signal)

Noise level
 Noiseless

EvaluationImplementation



• Cautionary note: no routing parasitics or PVT 
variations are considered, so this is the ideal 
case; when included it should only add to the 
performance degradation in dual rail circuits.

Contributions
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• Performance Metrics

– We have 2 different logic styles, CMOS & DDSLL

– Both are being scaled down from 65nm to 28nm

– Voltages are also scaled from nominal to nominal-0.5V

– Energy per operation, a relatively discriminant metric, is
used for performance comparison since it integrates the
total power over the time.

Performance Evaluation methodology
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• Security Metrics
 Simulated traces without any physical noise

𝐿𝑡
𝑖 (𝑋, 𝑁) = 𝐿𝑡

𝑠𝑖𝑚𝑢(𝑋, 𝑁)

• A multivariate power trace, 𝒍, reduced to univariate using PCA

𝑙 = 𝑃𝐶𝐴 𝒍

• Using Mangard’s SNR,

Since we have noise-free traces, we compute only the numerator
corresponding to maximizing the signal,

Security evaluation methodology
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• Simulation settings:
 Standard Vt transistors (no forward or reverse biasing effects)

 From 1.2V nominal for 65nm LP and 1V nominal for 28nm FDSOI, 
simulated up to nominal-500 mV

 10MHz frequency of operation

 Input signal which transitions from 0-1,0-2,….0-N where N=255 for 
security analysis

 Random 1000-bit input signal for Eop calculation

 signal, SPCA and energy per operation, Eop w.r.t VDD computed

Simulation Parameters



Security analysis

Security vs Performance– PCA applied signal

• The x-axes represents the Energy per 
operation ratio between CMOS & DDSLL, i.e

𝑬𝒐𝒑
𝑪𝑴𝑶𝑺

𝑬𝒐𝒑
𝑫𝑫𝑺𝑳𝑳

• The y-axes represent the ratio of the PCA-
applied Signal between CMOS & DDSLL, i.e

𝑺𝑷𝑪𝑨𝑪𝑴𝑶𝑺

𝑺𝑷𝑪𝑨𝑫𝑫𝑺𝑳𝑳



Scaling Trends-CMOS/DDSLL- 65nm/28nm

Security vs Performance– PCA applied signal

‐ Nominal voltage for 65nm technology is 1.2V (1.2-0.7V)
‐ Nominal voltage for 28nm technology is 1V (1 – 0.5V)



Scaling trends for CMOS - Performance

Scaling trends for CMOS Eop



Scaling trends for CMOS - Security

Scaling trends for CMOS signal
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• Interest in DDSLL over CMOS vanishes as circuit sizes shrink.

 Because the impact of imbalanced capacitances increases at lower-
scaled technologies.

 We believe this trend hold true for other types of dual-rail logic styles
(like WDDL, DyCML, SABL)

• SNR reduction via signal reduction is likely to become increasingly
challenging.

 By contrast, scaling trends are positive for CMOS because of increase
in (intrinsic) noise.

• Designing efficient and noisy CMOS implementations is an
interesting research challenge

 Dual-rail logics may still be useful for other purposes such as ensuring
independence for masking

Conclusion
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