
Two Operands of Multipliers
in Side-Channel Attack

Takeshi Sugawara, Daisuke Suzuki, and Minoru Saeki

Mitsubishi Electric Corporation
sugawara.takeshi@bp.mitsubishielectric.co.jp

Abstract. The single-shot collision attack on RSA proposed by Han-
ley et al. is studied focusing on the difference between two operands
of multipliers. There are two consequences. Firstly, designing order of
operands can be a cost-effective countermeasure. We show a concrete
example in which operand order determines success and failure of the
attack. Secondly, countermeasures can be ineffective if the asymmetric
leakage is considered. In addition to the main results, the attack by Han-
ley et al. is extended using the signal-processing technique of the big mac
attack. An experimental result to successfully analyze an FPGA imple-
mentation of RSA with the multiply-always method is also presented.

Keywords: RSA, Side-Channel Attack, Collision Attack, Montgomery
Multiplication

1 Introduction

Side-channel attacks use unintentional information leakage from secure chips to
compromise their security. New attacks and countermeasures have been studied
for years since the first attack was discovered in 90s [1].

Side-channel attacks are divided into multiple- and single-shot attacks de-
pending on the number of traces used. The first side-channel attack of RSA
presented by Kocher et al. is a single-shot attack [1]. A typical modular ex-
ponentiation algorithm makes conditional branch between multiplication and
squaring depending on a bit of the secret exponent. Kocher et al. showed that
the multiplication and squaring are distinguishable by analyzing a power trace,
and thus the secret exponent can be revealed.

Conditional branch is easily exploitable and thus should be removed. The
multiply-always method in Alg. 1 is a well-known method to implement RSA
without data-dependent branch. Even after data-dependent branch is removed,
there is residual side-channel leakage correlated to the operands of the multi-
plication and squaring [4]. The residual leakage is weak [5], but the emerging
new attacks can exploit it. Recently, successful single-shot attacks on FPGA im-
plementations were reported [6] [7] [8]. The successful single-shot attacks have
a large impact in designing secure implementations. That is because suppress-
ing the residual leakage requires a lot of effort. Hanley et al. suggest that a
multiplier-level countermeasure [9] [10] [11] is needed for the suppression. In this

2 T. Sugawara, D. Suzuki, and M. Saeki

paper, leakage from multipliers is studied. In contrast to the previous works on
leakage from multipliers [9] [12] [13], asymmetry between operands of multipliers
is focused. The contributions of this paper are summarized as follows.
A1 The single-shot collision attack on RSA proposed by Hanley et al. is studied
focusing on the difference between two operands of multipliers. The asymmetry
is reasoned by the Booth recoding and operand scanning.
A2 It is shown that designing order of operands can be a cost-effective coun-
termeasure.
A3 It is shown that some countermeasure become ineffective when the asym-
metric leakage is considered.

In addition to the above main results, there are two additional contributions.
B1 The single-shot attack by Hanley et al. [8] is extended using the technique
of the big mac attack [12].
B2 An experimental result to successfully analyze an FPGA implementation
of RSA with the multiply-always method is presented.

The paper is organized as follows. The conventional internal collision attacks
are reviewed in Sect. 2, followed by the proposed extension of the attack by
Hanley et al. Difference of operands of multipliers is discussed in Sect. 3. The
experimental results are shown in Sect. 4. In the section, the attack in Sect. 2 is
applied to an FPGA implementation with various operand orders. The experi-
mental result are discussed in Sect. 5. Sect. 6 is a concluding remark.

2 Single-Shot Collision Attack

Firstly, conventional attacks are briefly reviewed. Then, the two most relevant
attacks namely (i) the multiple-shot attack by Witteman et al. [14] and (ii)
the single-shot attack by Hanley et al. [8] are described in detail. Finally, the
proposed extension of the attack by Hanley et al. is described.

2.1 Conventional Single-Shot Attacks

Simple Power Analysis (SPA) [1] As described in the introduction,
Kocher et al. proposed the first single-shot attack on RSA. The binary method
used for modular exponentiation is targeted. In the binary method, there is a
branch between square and multiplication depending a bit of the secret exponent.
Kocher et al. showed that the path taken in the branch can be distinguished by
analyzing a power trace.
Big Mac Attack (BMA) [12] Walter proposed BMA to attack another
modular exponentiation algorithm called the window method [12]. The idea is
to compare two segments of a power trace in order to find collision. In addi-
tion, a sophisticated signal-processing technique is introduced to improve the
performance of the comparison. Firstly, the segment is split into multiple sub-
traces. Then the sub-traces are averaged together to make a processed segment.
Signal-to-noise ratio (SNR) is improved by the processing. Finally the processed

Two Operands of Multipliers in Side-Channel Attack 3

Algorithm 1 Multiply-Always Method with Left-To-Right Scanning

Input: Message M , Modulo N , Secret exponent d = (dt−1, · · · , d0)2
Output: Ciphertext Md

1: R0 ← 1
2: for j = t− 1 downto 0 do
3: dj ← 1− dj
4: R0 ← R2

0 mod N
5: Rdj

← R0 ×M mod N

6: end for
7: Return R0

segments are compared. The feasibility of the attack is proved with simulation
[12]. However, no practical result has been reported as described in [15].

Horizontal Correlation Power Analysis (HCPA) [9] HCPA proposed
by Clavier et al. is a successor of BMA [9]. In the attack, a single trace is
split into many sub-traces in the same manner as BMA. Then, a multiple-shot
attack is mounted to the virtual multiple traces. There are experimental results
successfully attacking software implementations [9].

Clustering-based attacks [6] Heyszl et al. proposed an attack using the
k-means clustering [6]. That is then improved by Perin et al. [7]. In those attacks,
segments of traces are classified into two groups using the k-means algorithm.
The two groups expectedly correspond to 0 and 1 of secret bits. FPGA imple-
mentations are defeated by the attacks [6] [7]. Notably, Perin et al. successfully
attacked an FPGA implementation with a multiplier-level countermeasure (the
leak resilient arithmetic [11]) by exploiting the remaining first-order leakage.

2.2 Multiple-Shot Internal Collision Attack by Witteman et al. [14]

Witteman et al. proposed a new multiple-shot attack which exploits collision
between consecutive operations i.e., internal collision [14]. The attack on the
multiply-always method (Alg. 1) is described.

The consecutive multiplication and squaring in Alg. 1 are considered. For
clarity they are rewritten as

R′
dj
← R0 ×M mod N (1)

R′′
0 ← R′2

0 mod N. (2)

If dj = 1, the memory R0 is not updated in Eq. (1) and thus R0 = R′
0. Therefore,

the multiplication and squaring collide. Alternatively when dj = 0, R0 ̸= R′
0 and

there is no collision. As a result, one bit of the secret exponent is revealed by
sensing the collision.

Suppose N different messages are encrypted with the same exponent. The
multiplication and squaring traces for the i-the message are denoted by mi

x and
six, respectively. The subscript x represents time. In order to find the collision,

4 T. Sugawara, D. Suzuki, and M. Saeki

mi
x and six are compared. More specifically, the correlation coefficient matrix

Cx,y is calculated as:

Cx,y = Fj [m
j
x, s

j
y]. (3)

Here, Fj is the correlation-coefficient operator defined as follows:

Fj [t
j , sj] :=

1

N

N−1∑
j=0

(tj − Ej [tj]) · (sj − Ej [sj])√
(Ej [tj]2 − Ej [(tj)2]) · (Ej [sj]2 − Ej [(sj)2])

, (4)

Ej [tj] :=
1

N

N−1∑
j=0

tj . (5)

If there is a collision, Cx,y contains a non-zero value. Therefore, the collision
can be found by looking at the matrix.

2.3 Single-Shot Collision Attacks by Hanley et al. [8]

Hanley et al. proposed a single-shot attack against various addition-chain algo-
rithms. In the following description, we focus on the one for the multiply-always
method.

The attack uses internal collision similarly to the one by Witteman et al.
However, the correlation coefficient in Eq. (4) is meaningless when N = 1 i.e.,
under a single-shot attack1. Instead, the two time-domain traces m0

x and s0x are
directly compared. Hanley et al. presented two different ways to measure the
similarity: the Euclidean distance and the time-domain correlation coefficient
given by Fx[m

0
x, s

0
x].

Hanley et al. applied the attack to a software implementation and successfully
recovered 99 % of the exponent bits. They also applied the attack to an FPGA
implementation, however, the attempt was unsuccessful with the one with the
multiply-always method. That is explained by the fact that (i) single-shot attacks
are susceptible to SNR and (ii) SNR is usually low in FPGAs because of higher
parallelism.

The attack uses multiple points of interest. That is the advantage of the at-
tack over the clustering-based attacks [7]. Therefore, the multiply-always method
can be defeated even if there is no first-order leakage [7]. In addition, the attack
is advantageous to HCPA on the point the known message is not needed. In other
words, the attack by Hanley et al. defeats the message-blinding countermeasure.

1 Clavier et al. proposed another single-shot extension [15]. The purpose of the attack
is to distinguish multiplication and squaring. There is a practical result on a software
implementation.

Two Operands of Multipliers in Side-Channel Attack 5

2.4 Proposed Extension of the Attack by Hanley et al.

An extension of the attack by Hanley et al. is described. The extension is on mea-
suring the similarity between the traces. The idea is simple: the signal processing
of BMA is applied to the traces before comparison 2.

Long-integer multiplication A×B is considered. A and B are composed of s
words. They are denoted by A = {as−1, · · · , a0} and B = {bs−1, · · · , b0} where
aj and bi are words. The long-integer multiplication comprises generation of
partial products aj × bi. The leakage of aj × bi is denoted by l(j, i).

The trace l(j, i) is processed before comparison. Fig. 1. illustrates the process.
Firstly, l(j, i) is compressed into s-dimensional vectors la(j) and lb(i). They are
defined as:

la(j) =
1

s

s−1∑
i=0

l(j, i), (6)

lb(i) =
1

s

s−1∑
j=0

l(j, i). (7)

la(j) and lb(i) are called the compressed vectors. By the compression, the effect
of one operand is removed thereby SNR of another operand is improved. The
compressed vectors la(j) and lb(i) correlate to aj and bi, respectively.

Finally, the compressed vectors from multiplication and squaring traces are
compared in the same manner as the original attack. The measured traces of
multiplication and squaring are denoted by l(j, i) and l′(j, i), respectively. The
corresponding compressed vectors are denoted by la(j), l

′
a(j), lb(i), and l′b(i).

If the time-domain correlation coefficient is used for measurement, they are ex-
pressed as:

Fj [la(j), l
′
a(j)] ∈ [−1, 1], (8)

Fi[lb(i), l
′
b(i)] ∈ [−1, 1]. (9)

The correlation coefficients become high if there is collision.
In order to conduct the attack, the attacker needs to get l(j, i) from a raw

trace in the same manner as BMA and HCPA. Even if the prior knowledge is
unavailable, the attacker can possibly reverse-engineer the points of l(j, i) by
analyzing the correlation matrix in Eq. (3). That is because the patterns on
the matrix reflect the underlying long-integer multiplication algorithm. That is
explained in Sect. 4.2 with experimental results. Note that in order to get a
meaningful correlation matrix, the exponent blinding should be disabled. Such
a requirement is satisfied in two cases. Firstly, the attacker with an open sample
can possibly profile the device while disabling the countermeasure. Secondly, the
same co-processor for modular exponentiation may be used for another purpose
without the exponent blinding. One such example is signature verification in
which no secret is involved.
2 The method can be thought as a missing variant with “regular algorithm + unknown
message” in the categorization by Bauer et al. [10].

6 T. Sugawara, D. Suzuki, and M. Saeki

a0×b0

...

a15×b0 a0×b1 a15×b1 a15×b15

Squaring trace: 64 integer mul!plica!onsMul!plica!on trace: 64 integer mul!plica!ons

Inner loop i=0

Compression

la(0), ..., la(15)

l(0,0), ..., l(15,0) l(0,1), ..., l(15,1) l(0,15), ..., l(15,15)

a0×b15

lb(0), ..., lb(15)

a0×b0

...

a15×b0 a0×b1 a15×b1 a15×b15

l (0,0), ..., l (15,0) l (0,1), ..., l (15,1) l (0,15), ..., l (15,15)

a0×b15

Compression

l a(0), ..., l a(15) l b(0), ..., l b(15)

Correla!on Correla!on

Corrj[la(j), l a(j)] Corri[lb(i), l b(i)]

Fig. 1. Distinguisher

3 Asymmetric Leakage

Difference between two operands of multipliers is discussed in (i) integer multi-
plier and (ii) long-integer multiplication (LIM) levels.

3.1 Asymmetry at Integer Multiplier Level

In the paper of BMA, Walter showed that two operands of a simple multiplier
are symmetric in terms of side-channel leakage [12]. However, sophisticated mul-
tipliers can be asymmetric as described below.

The Booth recoding is a common technique for partial product generation
(PPG)3 [17]. The technique enables to reduce the total number of partial prod-
ucts thereby improving the performance of integer multiplication. Fig. 2 shows
a circuit for generating one partial product using the radix-4 Booth recoding.
Firstly, the multiplicand A is expanded to {2A, A, 0, A, 2A}. The expansion
is efficiently implemented using shifts and NOT gates. Then, one out of the
five candidates is selected at the 5:1 selector. The selector output is the partial
product. The selector is controlled by a 3-bit chunk of the multiplier namely
{xi+1, xi, xi−1}.

The circuit in Fig. 2 is asymmetric between operands. Therefore, asymmetric
leakage is expected. Leakage from a 32-bit integer multiplier with the radix-4
Booth recoding is simulated. The multiplier is synthesized and post-synthesis
logic simulation is conducted. While the logic simulation, the number of signal-
transition events i.e., toggles is measured.

Two sets of test-vectors are used to drive the circuit. They are c × xi and
xi×c where c and xi are 32-bit integers. The test-vectors are designed to measure
toggles from one operand by fixing another to a constant.

3 Note that Walter and Samyde noticed that leakage from the Booth recoding is not the
one by the Hamming-weight model [13]. However, the difference between operands
was not discussed.

Two Operands of Multipliers in Side-Channel Attack 7

Mul plicand A

Shi" & invert

A0 2A

N

N
3

xi+1 xi xi-1

Mul plier X

A2A

Fig. 2. A circuit for generating a partial product in the radix-4 Booth recoding

500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

Toggle count

Fre
qu

en
cy

Case A: Multiplier is fixed
Case B: Multiplicand is fixed

Fig. 3. Toggle counts of a 32-bit multiplier

Histograms of the measured toggle counts are shown in Fig. 3. The black and
white bars correspond to the two sets of test-vectors. The two sets show clearly
different histograms. As shown in the histograms, more toggles are observed
when the multiplicand is fixed. That means the multiplier port makes more
toggles. The result is explained by an empirical fact that a selector signal has
stronger effect on toggle counts. More specifically, toggles at the 3-bit control
signal is amplified to N bits at the selector output.

3.2 Asymmetry at Long-Integer Multiplication Level

Difference of operands at the LIM level is discussed. There are many options at
this level. The Montgomery multiplication with the coarsely integrated operand
scanning (CIOS) shown in Alg. 2 is considered.

The long integers are represented byA = {as−1, · · · , a0} andB = {bs−1, · · · , b0}
where aj and bi are words. The core operation is aj × bi at the line 4 of Alg. 2
in which partial products are generated. LIM is commonly implemented with a
circuit shown in Fig. 4. The circuit uses a multiply-and-accumulate (MAC) unit.
The words aj and bi are read from the memory and fed to the MAC unit via
temporal registers labeled regA and regB.

Suppose regA and regB store the long integers A and B, respectively. Fig.
4 also shows an operation sequence describing the contents of the registers. As

8 T. Sugawara, D. Suzuki, and M. Saeki

Algorithm 2 Coarsely Integrated Operand Scanning [16]

Input: Word A = {as−1, · · · , a0} and B = {bs−1, · · · , b0}
Output: Product ti for i ∈ [0, s− 1]
1: for i = 0 to s− 1 do
2: C ← 0
3: for j = 0 to s− 1 do
4: (C, S)← tj + aj × bi + C
5: tj ← S
6: end for
7: (C, S)← ts + C
8: ts ← S
9: ts+1 ← C
10: C ← 0
11: # Lines for the Montgomery reduction are not displayed for clarity.
12: # See the literature [16] for the complete list.
13: end for
14: Return tj

shown in the table, regB is updated less frequently because the stored variables
bi is scanned at the outer loop in Alg. 2. For s-word long integers, regA and
regB are updated s2 and s times, respectively.

CMOS circuits make data-dependent power consumption when their inputs
are changed [2]. As a result, the operand scanned at the inner loop (i.e., A) has
stronger leakage. This LIM-level asymmetry is verified through experiments in
Sect. 4.

4 Experiments

Traces are captured from an FPGA implementation of the Montgomery multi-
plication. Firstly, the traces are analyzed using the attack by Witteman et al.
Then, the single-shot attack in Sect. 2.4 is applied. The purpose of the experi-
ment is twofold. Firstly, feasibility of the attack in Sect. 2.4 is verified. Secondly,
the effects of the asymmetric leakage are examined.

4.1 Setup

A circuit implementing the 1024-bit Montgomery multiplication is examined.
The circuit uses the MAC-based architecture in Fig. 4. The MAC unit has a
64-bit integer multiplier and thus the number of words s = 16 = 1024/64. The
words are scanned with the CIOS method in Alg. 2. The two operands to the
integer multiplier can be swapped by an external signal in order to evaluate the
asymmetry at the integer-multiplier level. The target circuit is implemented on
Virtex-II Pro FPGA on SASEBO [20].

The FPGA is measured by putting a magnetic-field probe on the chip sur-
face [18]. The probe is 0.1 mm in diameter. Traces are captured using an oscil-
loscope with the bandwidth of 12.5 GHz and the sampling rate of 25.0 GSa/s.

Two Operands of Multipliers in Side-Channel Attack 9

Memory

regA regB

Mul ply-and-accumulate
core

s = z + x×y

Memory

x yz

s

regA regB

a0 b0

b1

b2

b0

b0

b1

b1

b2

b2

An opera on
sequence when s=3

Seq.
no.

0

1

2

3

4

5

6

7

8

a1

a2

a0

a1

a2

a0

a1

a2

Fig. 4. A common circuit architecture for LIM

Test-vectors are designed to emulate RSA with the multiply-always method
(see Alg. 1). Firstly, 1024-bit random numbers xk, yk, and zk are generated for
0 ≤ k < 1000. For each triplet (xk, yk, zk), the Montgomery multiplication is
called in five ways as summarized in Tab. 1. Note that the Montgomery multi-
plication is denoted byM(·, ·) in the table.

The five Montgomery multiplications are denoted by (XY1), (XY2), (XX),
(YY), and (ZZ). The Montgomery multiplicationM(xk, yk), which corresponds
to the multiplication in Alg. 1, is conducted in (XY1) and (XY2). (XY1) and
(XY2) are different in the order of operands to the 64-bit integer multiplier. See
Tab. 1 for the operands in the LIM and integer-multiplier levels. The remain-
ing Montgomery multiplications namely M(xk, xk), M(yk, yk), and M(zk, zk)
correspond to the squaring in Alg. 1.

The traces are examined in pair. Six pairs namely

{(XY1), (XY2)} × {(XX), (YY), (ZZ)}.

are evaluated. The pairs are referred to as (i)-(vi) as summarized in Tab. 2.
There are collisions in the pairs (i)-(iv). Colliding operands, both at the LIM
and integer-multiplier levels, are also shown in Tab. 2. In (i) and (iii), there is
a collision between the LIM-level operands scanned at the inner loop of Alg.
2. On the other hand, the operands scanned at the outer loop collide in (ii)
and (iv). At the integer-multiplier level, the multiplicands collide in (i) and (iv).
Alternatively the multipliers collide in (ii) and (iii). There is no collision in (v)
and (vi).

The pairs are compared under the multiple- and single-shot attacks in the
following sections.

10 T. Sugawara, D. Suzuki, and M. Saeki

Table 1. Test-vectors of the Montgomery multiplication

LIM level integer-multiplier level

Identifier Operation Inner loop (aj) Outer loop (bi) multiplier multiplicand

(XY1) M(xk, yk) xk yk yk xk

(XY2) M(xk, yk) xk yk xk yk
(XX) M(xk, xk) xk xk xk xk

(YY) M(yk, yk) yk yk yk yk
(ZZ) M(zk, zk) zk zk zk zk

Table 2. Examined pairs of traces

Multiplication Squaring LIM-level integer-multiplier-level
Identifier mj

x sjy collision collision

(i) (XY1) (XX) inner (aj) multiplicand

(ii) (XY1) (YY) outer (bi) multiplier

(iii) (XY2) (XX) inner (aj) multiplier

(iv) (XY2) (YY) outer (bi) multiplicand

(v) (XY1) (ZZ) — —

(vi) (XY2) (ZZ) — —

4.2 Multiple-shot leakage using the attack by Witteman et al.

As a preliminary experiment, the pairs of the traces are analyzed using the attack
by Witteman et al. The correlation matrices in Eq. (3) are calculated for the
pairs (i)-(iv) in Tab. 2. The matrices are visualized as bitmap images in Fig. 5.

The bitmap images show different patterns depending on the colliding operands
at the LIM level. There are repeated slash lines on Fig. 5-(i) and -(iii) in which
there are collisions at the inner loop. On the other hand, collision at the outer
loop makes rectangle patterns as shown in Fig. 5-(ii).

The bitmap images also show the difference caused by the asymmetry at
the integer-multiplier level. The multiplier (cf. the multiplicand) shows higher
correlation as expected in Sect. 3.1. The slash lines are more clear in Fig 5-(iii)
compared to the ones in Fig 5-(i). Similarly, the rectangle patterns are more
distinct in Fig 5-(ii).

The bitmap images are intuitive but unsuitable for quantitative comparison.
More concrete comparison is conducted in the next section.

As described in Sect. 2.4, the attacker can get the points of interest for
l(j, i) by interpreting the bitmap images. The above-mentioned slash-line and
rectangle patterns are commonly found in many implementations. The attacker
can sample the clock cycles with high correlation for l(j, i).

4.3 Single-shot attack

The pairs of traces are analyzed with the method described in Sect. 2.4. The
correlation coefficients are evaluated for the pairs (i)–(vi) in Tab. 2. The pro-

Two Operands of Multipliers in Side-Channel Attack 11

(i) XY1-XX

50 100 150 200 250

50

100

150

200

250

(ii) XY1-YY

50 100 150 200 250

50

100

150

200

250

(iii) XY2-XX

50 100 150 200 250

50

100

150

200

250

(iv) XY2-YY

50 100 150 200 250

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5

Strength of absolute correla!on coefficient

A slash line

A slash line

A rectangle pa#ern

Cycle Cycle

Cycle Cycle

C
y
cl

e

C
y
cl

e

C
y
cl

e

C
y
cl

e

Fig. 5. Correlation coefficient matrices

cessing is chosen considering the patterns on the bitmap images. For the pairs
(i) and (iii) with collisions at the inner loop, Eq. (8) is used. Alternatively, Eq.
(9) is used for the pairs (ii) and (iv).

The results are shown as histograms of the correlation coefficients in Fig. 6.
Fig. 6-(i) to -(iv) correspond to the pairs (i)-(iv) in Tab. 2. The pairs (v) and
(vi), that have no collision, are also shown for comparison.

In the real attack, the black and white histograms are not separated. There-
fore, the attacker should set a threshold to make a decision. In this experiment,
the measured correlation coefficients are split into upper and lower halves. In
other words, median is used as a threshold. Finally, the rate of successful de-
cision is calculated. The success rates are (i) 98.3 %, (ii) 93.0 %, (iii) 99.5 %,
and (iv) 52.7 %, respectively. The pairs (iii) is the most distinguishable. This
is the first successful single-shot collision attack of the multiply-always method

12 T. Sugawara, D. Suzuki, and M. Saeki

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

(i) XY1-XX

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

160

180

(ii) XY1-YY

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

350

400

450

(iii) XY2-XX

-1 -0.5 0 0.5 1
0

10

20

30

40

50

60

70

80

(iv) XY2-YY

Correla!on coefficient Correla!on coefficient

Correla!on coefficient Correla!on coefficient

F
re

q
u

e
n

cy

F
re

q
u

e
n

cy

F
re

q
u

e
n

cy

F
re

q
u

e
n

cy

(XY1)-(XX)

(XY1)-(ZZ)

(XY1)-(YY)

(XY1)-(ZZ)

(XY2)-(XX)

(XY2)-(ZZ)

(XY2)-(YY)

(XY2)-(ZZ)

Success rate = 98.3 % Success rate = 93.0 %

Success rate = 99.5 % Success rate = 52.7 %

Fig. 6. Histograms of correlation coefficients

on FPGA. In contrast, the attack is unsuccessful in (iv). The result show that
operand order has a significant impact on the success rate of the attack.

5 Discussion

The experimental results indicate that the operand order has a considerable
impact on side-channel leakage. The results are discussed from countermeasure
and attack view points.

5.1 Leak Reduction by Designing Operand Order

The experimental results show that the operand order determines success and
failure of the attack. Therefore, the amount of leakage can be reduced by ap-
propriately designing the order of operands. The pair (iv) in Tab. 2 is the best
option (see Fig. 6-(iv)). The operand order can be changed at almost no cost.
In addition to the cost effectiveness, the proposed method can easily be com-
bined with other conventional countermeasures (e.g., the randomized operand
scanning [9] [10]).

The target implementation discussed in the paper, the multiply-always method
using the Montgomery multiplication with CIOS, is one of many possible designs.
It is worth discussing how the operand order can be designed in other cases.

Two Operands of Multipliers in Side-Channel Attack 13

Firstly, the same idea can be easily extended to many other methods. That
is because the causes of asymmetry, the partial-product generation and operand
scanning, are essential in long-integer multiplication.

However, there is always an exception. A notable exception is the Finely
Integrated Operand Scanning (FIOS) instead of CIOS [16]. In FIOS, the reg-
ister containing the variable scanned at the outer cannot be kept while the
outer loop. That is because another word-wise multiplication, needed for the
Montgomery reduction, should be interleaved. As a result, the leakage from the
operand scanned at outer loop is not necessarily smaller.

Alternatively, the operand order can be determined using the conventional
toggle simulation. As shown in Sect. 3.1, the asymmetry at the integer multiplier
can be simulated. The LIM-level asymmetry is not simulated in the paper, how-
ever, the frequency of register update can be covered by the toggle simulation.

5.2 Attack on Montgomery Powering Ladder

In contrast to the previous result, the asymmetric leakage can make some coun-
termeasures ineffective. Alg. 3 shows the Montgomery powering ladder (MPL).
We focus on collisions between inputs 4.

In MPL, there is always collision between consecutive operations:

Ra ← R0 ×R1 mod N, (10)

Ra ← Ra ×Ra mod N. (11)

Therefore, the presence of collision does not leak kj . However, the colliding
operand depends on kj . If kj = a = 0, the first operands in Eq. (10) and (11)
collide. On the other hand, the second operands collide if kj = a = 1. If the
attacker can distinguish the collisions at first and second operands, the secret
parameter kj = a is revealed.

Interestingly, if Eq. (10) and Eq. (11) are replaced with the following state-
ments without changing the result of the algorithm, the attack is no longer
effective:

Ra ← Ra ×Ra mod N, (12)

Ra ← Ra ×Ra mod N. (13)

The algorithm appear in the work by Hanley et al. [8]. Now, collision is always
occurred at the first operand. Therefore, the colliding operand becomes inde-
pendent of kj . This is another example showing the importance of designing
operand order.

4 Hanley et al. considered more general cases considering a collision between input
and output. However, the input-output collision was very weak in our setup.

14 T. Sugawara, D. Suzuki, and M. Saeki

Algorithm 3 Montgomery Powering Ladder

Input: Message M , scalar k = (kt−1, · · · , k0)2
Output: Ciphertext Md

1: R0 ← 1; R1 ←M
2: for j = t− 1 downto 0 do
3: a← kj ; a← 1− a
4: Ra ← R0 ×R1 mod N
5: Ra ← Ra ×Ra mod N
6: end for
7: Return R0

6 Conclusion

Two operands of multipliers are asymmetric in terms of side-channel leakage.
The reason can be explained by asymmetries at arithmetic-circuit and micro-
architecture levels. The leakage can be suppressed by appropriately designing
the order of operands. On the other hand, some countermeasure can be defeated
if the leakages from first and second operands are distinguishable.

Many problems are remained open. The attack using input-to-output collision
is an interesting challenge. Another important open problem is on incomplete
exponent recovery. The successful rate more than 99 % is clearly dangerous. The
ideal goal is 50.0 %, however, it could possibly be relaxed.

Acknowledgement

The authors would like to thank the anonymous reviewers at COSADE 2015
for their valuable comments. The study was conducted as a part of the CREST
Dependable VLSI Systems Project funded by the Japan Science and Technology
Agency.

References

1. P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, CRYPTO 1999,
LNCS, Vol. 1666, pp. 388–397, 1999.

2. S. Mangard, E. Oswald, T. Popp, “Power Analysis Attacks: Revealing the Secrets
of Smart Cards,” Springer-Verlag, 2007.

3. J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems,” CHES 1999, LNCS, Vol. 1717, pp. 292-302, 1999.

4. F. Amiel, B. Feix, M. Tunstall, C. Whelan, W. P. Marnane, “Distinguishing Multi-
plications from Squaring Operations,” SAC 2008, LNCS Vol. 5381, p. 346-360, 2009.

5. N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir, “Collision-based
Power Analysis of Modular Exponentiation Using Chosen-message Pairs”, CHES
2008, LNCS, Vol. 5154, pp. 100-112, 2008.

6. J. Heyszl, A. Ibing, S. Mangard, F. D. Santis, and G. Sigl, “Clustering Algorithms for
Non-profiled Single-Execution Attacks on Exponentiations”, Smart Card Research
and Advanced Applications LNCS 2014, pp 79-93.

Two Operands of Multipliers in Side-Channel Attack 15

7. G. Perin, L. Imbert, L. Torres, and P. Maurine, “ Attacking Randomized Exponen-
tiations Using Unsupervised Learning”, In Proc. COSADE 2014.

8. N. Hanley, H. Kim, and M. Tunstall, “Exploiting Collisions in Addition Chain-based
Exponentiation Algorithms Using a Single Trace”, Cryptography ePrint Archive:
Report 2012/485, http://eprint.iacr.org/2012/485

9. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil, “Horizontal Cor-
relation Analysis on Exponentiation,” In ICICS, pp. 46–64, 2010.

10. A. Bauer, E. Jaulmes, E. Prouff, and J. Wild, “Horizontal and Vertical Side-
Channel Attacks against Secure RSA Implementations”, CT-RSA 2013, LNCS, Vol.
7779, pp. 1-17, 2013.

11. J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia, “Leak Resistant Arithmetic”,
CHES 2004, LNCS, Vol. 3156, pp. 62-75, 2004.

12. C. D. Walter, “Sliding Windows Succumbs to Big Mac Attack.,” CHES 2001,
LNCS, Vol. 2162, pp. 286–299, 2001.

13. C. D. Walter and D. Samyde, “Data Dependent Power Use in Multipliers”, 17th
IEEE Symposium on Computer Arithmetic (ARITH’05).

14. M. F. Witteman, J.G.J. van Woudenberg, F. Menarini, “Defeating RSA Multiply-
Always and Message Blinding Countermeasures,” CT-RSA 2011, LNCS, Vol. 6558
pp. 77–88, 2011.

15. C. Clavier, B. Feix, G. Gagnerot, C. Giraud, M. Roussellet, and V. Verneuil, “
ROSETTA for Single Trace Analysis Recovery Of Secret Exponent by Triangular
Trace Analysis”, INDOCRYPT 2012, LNCS, Vol. 7668, pp. 140-155, 2012.

16. C. K. Koç, T. Acar, B. S. Kaliski Jr, “Analyzing and Comparing Montgomery
Multiplication Algorithms”, Micro, IEEE, 1996.

17. I. Koren, “Computer Arithmetic Algorithms 2nd Ed.”, A K Peters/CRC Press,
2001.

18. T. Sugawara, D. Suzuki, M. Saeki, M. Shiozaki, T. Fujino, “On Measurable Side-
Channel Leaks Inside ASIC Design Primitives”, CHES 2013, LNCS, Vol. 8086, pp.
159-178, 2013.

19. K. Okeya, K. Sakurai, “A Second-order DPA Attack Breaks a Window-method
based Countermeasure against Side Channel Attacks,” ISC 202. Volume 2433 of
LNCS., Springer (2002) 389–401

20. AIST, Side-Channel Attack Standard Evaluation Board, http://www.risec.aist.
go.jp/project/sasebo/

