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Fault injection attacks against microcontrollers

B Fault Injection attacks :
O Injects faults in cryptographic operation £

O Obtain a secret key from faulty :
ciphertexts or other information g

B Countermeasures against the attacks by software
O Fault detection by recalculation
O Adding random delay before encryption

B Multiple fault injection attacks in microcontrollers

O Involves Multiple fault injections into single cryptographi
C operation
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Multiple fault injection attacks

B Experiments against RSA software
O |njects faults into both encryption and recalculation
O Power glitches [Kim 2007]
O Laser shots [Trichina 2010]
O Skips branch instruction in recalculation routine

B Conventional attacks were performed in a white-box setti
ng
O Execution timing of critical instructions are known

O Black-box condition (execution timing is not known) w
as not considered in literature
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Goal of this work

Investigating multiple-fault injection attack in
black-box setting and countermeasure

B Scanning appropriate fault injection timing

O Controlling fault injection timing adaptively according t
o the output of microcontrollers

O Attack can be applied without knowledge of program

B An experiment of attack against AES with recalculation

O Demonstrates that we can obtain faulty ciphertext for
DFA

B Proposal of a countermeasure
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Outline

B Concept of the proposed attack
B Scanning algorithm

B Experiment of proposed attack against AES program wit
h recalculation

B Countermeasure against the proposed attack

B Conclusion and future works
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Multiple fault injection attack against recalculation

Output ciphertext | |Output error signal
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Assumption of our attack

Execution time

<€ >
Communication PlaintextX No data X Ciphertext
signal data data

cycle count of cryptographic operation ¢,

Trigger
signal

Fault position p‘

Fault injection timing

Cryptographic operation Output

Countermeasure by recalculation is present
We can observe start and end timings of cryptographic op
eration through communication signal
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Scanning fault timing

% movw r16,r24 Attacker gets:
sts (s)+1,r25

sts s,r24 I
1di ri18,108(@) Eriraudgiia

1di r19,hig(e)
movw r26,rilé6 ..

add r26,r18 < z=_ Preliminary fault
adc r27,r19 _ .

movw r3e,r22 C= EnCrypt|0n(P) &- Fault A

add r30,r18

adc r31,ri19 ‘&— Fault B

1d r24,z

st X,r24
movw r26,rl8 l

subi r26,108(-(rkey)))

P' = Decryption(C)

. Y

call AES_encrypt
mov ri15,r24

tst ris P =P'?
brne LBL_AFTER_SEND no
& call SendCiphertext
+ LBL_AFTER_SEND:
. yes
Output C Output error signal
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Obtaining faulty ciphertext for DFA

Example of faulty ciphertext

bOO bOl b02 b03
bio| b1y | bio| B
P12 ) State matrix of Faulty bytes
b30 b31 b32 b33
After ShiftRows
AddRoundKey || After SubBytes  After ShiftRows After MixColumns| | After SubBytes (Ciphertext)
~
(a) - —> -
. o~ . ol B L rr_ d C . 4
Estieting position off faultAfrom (ciphertext
8th round 9th round 10th round -/
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Experiment

B Experimental setup

8-bit microcontroller

r ™
- ~ ~ ) o | (ATmega163)
Fault injection circuit ek AES with QHEE ol &) = &) =
7 signal recalculation code | - e ELiok 1
B ¢ Bus Communcation +m: B Clock Signa
‘ UI/SI;: I/F = code F with Glitch
Data bus . ‘ w -
o Control FPGA Microcontroller i- T mowuﬁow
SASEBOW (smartcard) f I "
\_ N ) ﬁh ‘
~ A gr_ﬁ e
[Fault injection controller] - 27
, & 7 e FPGA s
uUsB PC Communicate —

J

with PC
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Experimental conditions

B Conditions

ECryptographic W128-bit AES with recalculation
algorithm

HEMicrocontroller HAVR ATmegal63 ( 8-bit )
ECompiler Hgcc 4.3.3 -Os

EFPGA HXilinx XC6SLX150

BClock frequency of 3.6 MHz
microcontroller

HEPlaintext H(00112233445566778899aabbccddeef
[ f)16
EKey H(000102030405060708090a0b0c0dOe
0f)16

O Can be exploited by Piret's DFA
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Number of trials in our attack

—> Preliminary fault

o —> Fault A
Trigger | Pg | —> Fault B
signal -
Step | Step lll | i[— Step |l
Y
In'gut C = Encryption(P) | P'= Decryption(C) Ouéput t
T >
P=pP?
B Steps H Fault position
B Start EEnd
BStepl (Scanning ¥ pp=0 pp=3

preliminary fault)
B Step Il (Scanning Fault B)

B Step lll (Scanning Fault A)
H Total

pB=30530(= pB=3052
cp) 7
pA=3 pA=9996

H # of
trials

H4

H4

H9994
H10002




Instruction that was skipped in the experiment

\

(

: LBL MAIN:

: LBL_SUCCESS:

? LBL_FAIL:

=
© VW 0 Jd o Ll & WDN K

: LBL FINISH:

~

call EncWithCheck
tst A
brne LBL FAIL

call SendData
jmp LBL FINISH

call SendError

J

Branch is not skipped

=
o

-

: LBL MAIN:

: LBL_SUCCESS:

. LBL_FAIL:

W 0 J o U1 & W N BB

: LBL_FINISH:

call EncWithCheck
tst A

nop

; do nothing

call SendData
jmp LBL FINISH

call SendError

N ¢

/

Branch is skipped
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Routines

---------------------------------------------------
. 3

Output

*
---------------------------------------------------



Application of proposed attack

B Attacks against conventional countermeasures for fault |
njection
O Duplication of instructions can be defeated by injectin
g faults into all the duplicated instructions
O Random delay before the encryption can be defeated
by skipping random number generation code
B Proposed countermeasure

O Rearrange instructions of main function so that faulty
ciphertext is not output when critical instructions are s
Kipped
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Countermeasure for the skip of branch instruction

- Routines
- ~ 1: jmp LBL MAIN Main
1: LBL_MAIN: 2: LBL_SUCCESS:
: : > Output
2: call EncWithCheck 3: call SendData : :
3: tst A 4: jmp LBL FINISH Error handling :
4 : brne LBL—FAIL 5 : LBL_MAIN : R A
5: LBL_ SUCCESS: 6: call EncWithCheck
6: call SendData 7: tst A
7: Jjmp LBL FINISH 8: breq LBL SUCCESS
8: LBL_FAIL: 9: LBL_FAIL :
9: call SendError 10: call SendError
10: LBL_FINISH: 11: LBL_FINISH:
\_ _J \ _J
w/0 countermeasure Modified code #1

B Qutput routine was moved to the address less than that of encrypt
lon
B Branch condition was flipped
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Attack on test (TST) instruction

Routines

N e ‘-
& jmp LBL MAIN Main

: LBL_SUCCESS: Output
call SendData :
jmp LBL FINISH

: LBL MAIN:

call EncWithCheck
. EFtT—=—

breq LBL SUCCESS Jumps when
: LBL_FAIL: Z=1
call SendError

11: LBL FINISH:
S /

Modified code #1

-
---------------------------------------------------

<l

© 0 J o 1 d W N R

=
o

B Program may jumps to Line 2 when Line 7 was skipped
andZ=1
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Proposed countermeasure

\-

W o o W N R

[
o

11:

jmp LBL_MAIN

: LBL_SUCCESS:

call SendData

jmp LBL FINISH
LBL MAIN:

call EncWithCheck
tst A

breq LBL SUCCESS

: LBL_FAIL:

call SendError
LBL FINISH:

4 .
1: jmp LBL MAIN
2: LBL _SUCCESS:
3: call SendData
4: jmp LBL_ FINISH
5: LBL_CMP:
6: tst A
7: breq LBL SUCCESS
8: jmp LBL MAIN
9: LBL_MAIN:
10: call EncWithCheck
11: cl=z
12: brne LBL CMP
13: LBL_FAIL:
14: call SendError
15: LBL FINISH:

2

Modified code #1

With countermeasure

for skipping
test instruction

N ;

Routines

s

Output

---------------------------------------------

B |nitialize Zero (Z) flag before executing test instruction
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Conclusion and future works

B Proposal of scanning method to find appropriate fault positi
on
O Tuning the fault position adaptively according to output

B Experiment against AES program with recalculation
O Successfully obtained faulty ciphertext

B Proposal of countermeasure against proposed attack

B Future works
O Experiment on microcontrollers with other architectures

O Implementation of compiler applies the proposed counte
rmeasure automatically
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Thank you!

Any questions?
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Screenshot during fault injection

i 100e/ B 5.00v/ @ 200v/ I 27808 20008/ Stop £ 1.02v

;

Acquire Menu \/
+9 Acq Mode Realtime
Normal [ |
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