e
;f 6,\%
V

%,
b ‘

&g

TOHOKU

April 15, 2014 COSADE2014

A Multiple-fault Injection Attack by Adaptiv
e Timing Control under Black-box Conditi
ons and a Countermeasure

Sho Endol, Naofumi Hommal, Yu-ichi Hayashil,

Junko Takahashi2, Hitoshi Fuji2 and Takafumi Aokil

1Tohoku University, Japan
2NTT Secure Platform Laboratories, Japan

GSIS, TOHOKU UNIVERSITY

Fault injection attacks against microcontrollers

B Fault Injection attacks :
O Injects faults in cryptographic operation £

O Obtain a secret key from faulty :
ciphertexts or other information g

B Countermeasures against the attacks by software
O Fault detection by recalculation
O Adding random delay before encryption

B Multiple fault injection attacks in microcontrollers

O Involves Multiple fault injections into single cryptographi
C operation

GSIS, TOHOKU UNIVERSITY

Multiple fault injection attacks

B Experiments against RSA software
O |njects faults into both encryption and recalculation
O Power glitches [Kim 2007]
O Laser shots [Trichina 2010]
O Skips branch instruction in recalculation routine

B Conventional attacks were performed in a white-box setti
ng
O Execution timing of critical instructions are known

O Black-box condition (execution timing is not known) w
as not considered in literature

GSIS, TOHOKU UNIVERSITY

Goal of this work

Investigating multiple-fault injection attack in
black-box setting and countermeasure

B Scanning appropriate fault injection timing

O Controlling fault injection timing adaptively according t
o the output of microcontrollers

O Attack can be applied without knowledge of program

B An experiment of attack against AES with recalculation

O Demonstrates that we can obtain faulty ciphertext for
DFA

B Proposal of a countermeasure

GSIS, TOHOKU UNIVERSITY

Outline

B Concept of the proposed attack
B Scanning algorithm

B Experiment of proposed attack against AES program wit
h recalculation

B Countermeasure against the proposed attack

B Conclusion and future works

GSIS, TOHOKU UNIVERSITY

Multiple fault injection attack against recalculation

Output ciphertext | |Output error signal

GSIS, TOHOKU UNIVERSITY

Assumption of our attack

Execution time

<€ >
Communication PlaintextX No data X Ciphertext
signal data data

cycle count of cryptographic operation ¢,

Trigger
signal

Fault position p‘

Fault injection timing

Cryptographic operation Output

Countermeasure by recalculation is present
We can observe start and end timings of cryptographic op
eration through communication signal

Aprll 15’ 2014 GSIS, TOHOKU UNIVERSITY

Scanning fault timing

% movw r16,r24 Attacker gets:
sts (s)+1,r25

sts s,r24 I
1di ri18,108(@) Eriraudgiia

1di r19,hig(e)
movw r26,rilé6 ..

add r26,r18 < z=_ Preliminary fault
adc r27,r19 _ .

movw r3e,r22 C= EnCrypt|0n(P) &- Fault A

add r30,r18

adc r31,ri19 ‘&— Fault B

1d r24,z

st X,r24
movw r26,rl8 l

subi r26,108(-(rkey)))

P' = Decryption(C)

. Y

call AES_encrypt
mov ri15,r24

tst ris P =P'?
brne LBL_AFTER_SEND no
& call SendCiphertext
+ LBL_AFTER_SEND:
. yes
Output C Output error signal

GSIS, TOHOKU UNIVERSITY

Obtaining faulty ciphertext for DFA

Example of faulty ciphertext

bOO bOl b02 b03
bio| b1y | bio| B
P12) State matrix of Faulty bytes
b30 b31 b32 b33
After ShiftRows
AddRoundKey || After SubBytes After ShiftRows After MixColumns| | After SubBytes (Ciphertext)
~
(a) - —> -
. o~ . ol B L rr_ d C . 4
Estieting position off faultAfrom (ciphertext
8th round 9th round 10th round -/

April 15, 2014

GSIS, TOHOKU UNIVERSITY

Experiment

B Experimental setup

8-bit microcontroller

r ™
- ~ ~) o | (ATmega163)
Fault injection circuit ek AES with QHEE ol &) = &) =
7 signal recalculation code | - e ELiok 1
B ¢ Bus Communcation +m: B Clock Signa
‘ UI/SI;: I/F = code F with Glitch
Data bus . ‘ w -
o Control FPGA Microcontroller i- T mowuﬁow
SASEBOW (smartcard) f I "
_ N) ﬁh ‘
~ A gr_ﬁ e
[Fault injection controller] - 27
, & 7 e FPGA s
uUsB PC Communicate —

J

with PC

GSIS, TOHOKU UNIVERSITY

Experimental conditions

B Conditions

ECryptographic W128-bit AES with recalculation
algorithm

HEMicrocontroller HAVR ATmegal63 (8-bit)
ECompiler Hgcc 4.3.3 -Os

EFPGA HXilinx XC6SLX150

BClock frequency of 3.6 MHz
microcontroller

HEPlaintext H(00112233445566778899aabbccddeef
[f)16
EKey H(000102030405060708090a0b0c0dOe
0f)16

O Can be exploited by Piret's DFA

GSIS, TOHOKU UNIVERSITY

Number of trials in our attack

—> Preliminary fault

o —> Fault A
Trigger | Pg | —> Fault B
signal -
Step | Step lll | i[— Step |l
Y
In'gut C = Encryption(P) | P'= Decryption(C) Ouéput t
T >
P=pP?
B Steps H Fault position
B Start EEnd
BStepl (Scanning ¥ pp=0 pp=3

preliminary fault)
B Step Il (Scanning Fault B)

B Step lll (Scanning Fault A)
H Total

pB=30530(= pB=3052
cp) 7
pA=3 pA=9996

H # of
trials

H4

H4

H9994
H10002

Instruction that was skipped in the experiment

\

(

: LBL MAIN:

: LBL_SUCCESS:

? LBL_FAIL:

=
© VW 0 Jd o Ll & WDN K

: LBL FINISH:

~

call EncWithCheck
tst A
brne LBL FAIL

call SendData
jmp LBL FINISH

call SendError

J

Branch is not skipped

=
o

-

: LBL MAIN:

: LBL_SUCCESS:

. LBL_FAIL:

W 0 J o U1 & W N BB

: LBL_FINISH:

call EncWithCheck
tst A

nop

; do nothing

call SendData
jmp LBL FINISH

call SendError

N ¢

/

Branch is skipped

GSIS, TOHOKU UNIVERSITY

Routines

. 3

Output

*

Application of proposed attack

B Attacks against conventional countermeasures for fault |
njection
O Duplication of instructions can be defeated by injectin
g faults into all the duplicated instructions
O Random delay before the encryption can be defeated
by skipping random number generation code
B Proposed countermeasure

O Rearrange instructions of main function so that faulty
ciphertext is not output when critical instructions are s
Kipped

GSIS, TOHOKU UNIVERSITY

Countermeasure for the skip of branch instruction

- Routines
- ~ 1: jmp LBL MAIN Main
1: LBL_MAIN: 2: LBL_SUCCESS:
: : > Output
2: call EncWithCheck 3: call SendData : :
3: tst A 4: jmp LBL FINISH Error handling :
4 : brne LBL—FAIL 5 : LBL_MAIN : R A
5: LBL_ SUCCESS: 6: call EncWithCheck
6: call SendData 7: tst A
7: Jjmp LBL FINISH 8: breq LBL SUCCESS
8: LBL_FAIL: 9: LBL_FAIL :
9: call SendError 10: call SendError
10: LBL_FINISH: 11: LBL_FINISH:
_ _J \ _J
w/0 countermeasure Modified code #1

B Qutput routine was moved to the address less than that of encrypt
lon
B Branch condition was flipped

GSIS, TOHOKU UNIVERSITY

Attack on test (TST) instruction

Routines

N e ‘-
& jmp LBL MAIN Main

: LBL_SUCCESS: Output
call SendData :
jmp LBL FINISH

: LBL MAIN:

call EncWithCheck
. EFtT—=—

breq LBL SUCCESS Jumps when
: LBL_FAIL: Z=1
call SendError

11: LBL FINISH:
S /

Modified code #1

-

<l

© 0 J o 1 d W N R

=
o

B Program may jumps to Line 2 when Line 7 was skipped
andZ=1

GSIS, TOHOKU UNIVERSITY

Proposed countermeasure

\-

W o o W N R

[
o

11:

jmp LBL_MAIN

: LBL_SUCCESS:

call SendData

jmp LBL FINISH
LBL MAIN:

call EncWithCheck
tst A

breq LBL SUCCESS

: LBL_FAIL:

call SendError
LBL FINISH:

4 .
1: jmp LBL MAIN
2: LBL _SUCCESS:
3: call SendData
4: jmp LBL_ FINISH
5: LBL_CMP:
6: tst A
7: breq LBL SUCCESS
8: jmp LBL MAIN
9: LBL_MAIN:
10: call EncWithCheck
11: cl=z
12: brne LBL CMP
13: LBL_FAIL:
14: call SendError
15: LBL FINISH:

2

Modified code #1

With countermeasure

for skipping
test instruction

N ;

Routines

s

Output

B |nitialize Zero (Z) flag before executing test instruction

GSIS, TOHOKU UNIVERSITY

Conclusion and future works

B Proposal of scanning method to find appropriate fault positi
on
O Tuning the fault position adaptively according to output

B Experiment against AES program with recalculation
O Successfully obtained faulty ciphertext

B Proposal of countermeasure against proposed attack

B Future works
O Experiment on microcontrollers with other architectures

O Implementation of compiler applies the proposed counte
rmeasure automatically

GSIS, TOHOKU UNIVERSITY

Thank you!

Any questions?

April 15, 2014

GSIS, TOHOKU UNIVERSITY

19

Screenshot during fault injection

i 100e/ B 5.00v/ @ 200v/ I 27808 20008/ Stop £ 1.02v

;

Acquire Menu \/
+9 Acq Mode Realtime
Normal [|

GSIS, TOHOKU UNIVERSITY

	Diapo 1
	Fault injection attacks against microcontrollers
	Multiple fault injection attacks
	Goal of this work
	Outline
	Multiple fault injection attack against recalculation
	Assumption of our attack
	Scanning fault timing
	Obtaining faulty ciphertext for DFA
	Experiment
	Experimental conditions
	Number of trials in our attack
	Instruction that was skipped in the experiment
	Application of proposed attack
	Countermeasure for the skip of branch instruction
	Attack on test (TST) instruction
	Proposed countermeasure
	Conclusion and future works
	Thank you! Any questions?
	Screenshot during fault injection

