
1

Leakage Resilient Circuits

Sebastian Faust
EPFL, Switzerland

(or: Leakage models for masking)

Cryptodevices

2

cryptographic device

 implementation

very secure

much less secure!

− well-defined mathematical
object− often proof-driven security analysis

− many ways of implementing: details matter!

− new attacks possible on crypto implementations

Goal of Leakage resilient crypto:
Proof-driven security analysis for implementations

1. Define model & security notion
Example: Digital signatures

key K

message signature

Provable Security

3

1. Define model & security notion
Example: Digital signatures

key K

Provable Security

repeat

Scheme is secure: no adversary can
output a valid forgery!

Forgery for new
message

4

1. Define model & security notion

Provable Security

2. Design cryptoscheme
Usually described in mathematical language

3. Prove security

 Shows security not only against one specific attack, but any attack within
the model (if assumption holds)

Reduce security of complex scheme to simple assumption, e.g., factoring

5

Information-theoretic proofs: information is “useless” to the adversary

Security proven but in what model?

Theory vs. Reality
Attack algorithm:

Controls inputs /outputs but
internals stay hidden

Attack Implementation:

KEY

Devices leak about internals

implement

Best attack for AES:
2126.1

Can break AES within hours
with side-channel analysis

6

Goals of leakage resilience

7

Incorporate leakage into model

Develop new countermeasures

Provably secure implementations ?
Best answered by looking at examples

Leakage models for
masking

8

Leakage models for
masking

9

Masking

Basic idea of masking

10

Common countermeasure against power analysis

Idea: protect sensitive information by randomized
encoding

Additive secret sharing:
C := (C1,C2) random s.t.

S = C1 + C2
S

Encode

Learns nothing about S, if
leakage depends only on

one element

Can protect against univariate attacks

f(C1) f(C2)

Insecure when considering multivariate distributions

Basic idea of masking

11

Use n shares to protect against (n-1)-variate attacks

Increasing number of shares:

C := (C1...Cn) s.t.
S=C1+...+ Cn

S
Encode

 Increases attack order
 Increases attack difficulty

Learns nothing about S, if
leakage depends only on

n-1 shares

Two main questions:
• How to use shared secrets to protect cryptoscheme
• How to model security of complext algorithms

Leakage models for
masking

12

Circuit Compiler

Leakage resilient circuits

13

C
K

X

Formalization of masking by Ishai-Sahai-Wagner-03

Y

Arbitrary computation modeled as a circuit
Only abstraction to describe „arbitrary
computation“ can also be software...

Leakage resilient circuits

14

K’
C’C

K Circuit compiler

X

Formalization of masking by Ishai-Sahai-Wagner-03

How to formalize this?

Y X
Y

Circuit Compiler: Run once at production time
(no leakage)Input: Description of circuit C with key K (e.g.,
circuit for AES) Output: Description of circuit C’ with key K’ (C’ is
probabilistic) Correctness: C[K] and C’[K’] have same
functionalityAdditionally: C’[K’] leakage resilient for many
executions
 adversary learns nothing “useful” from leakage

?

Real:

15

K’
C’C

K

X Y

Simulation-based security

X,

f

Y, f(state)

indistinguishable

outputoutput

Repeat many
times

Continuous leakage: many observations are possible

What function can the
leakage f be?

Ideal:

Adversary learns no more than by black-box access

What does it mean?

For unbounded adversary: MI(K ; f(.), ... f(.)) < negl

Even more: Cannot break underlying security notion

Leakage models for
masking

16

n-probing model

C

M

● +

●

n-Probing adversary (ISW03)
Adversary gets n intermediate values of computation

 L = { values on n adversarial chosen wires }

n-probing attack formalization of n-variate attacks

17

Basic ingredient: encoding scheme
C := (C1...Cn) s.t.

S=C1+...+ Cn
S Encode

Insecure in continuous setting!

Continuous leakage
Idea: Prob. algorithm to refresh additive encoding:

Input: C = Enc(s) Output: fresh encoding C’ = Enc(s)

C1

C2

…

...

Cn
+1

+

R1

R2

…

...

Rn
+1

=
C’1

C’2

…

...

C’n
+1

Enc(0
)

Enc(s
)

Enc(s
)

Security:

18

Correctness: By linearity Enc(s) + Enc(0) = Enc(s)

…C
Refresh C’ Refresh C’

’

Secure for n/2 probes per execution

ISW Compiler: High level

19

1. Memory:

A bit s

K’

C’C
K

a
s s’

an
d

an
d

an
d

outpu
t

ne
g

A S S’

and

C s.t.
Dec(C)=a∧s

C
s.t.Dec(C)=s∧s

’

Dec

Enc
a

output

and

D

and

ne
g

Encoded with Boolean
masking, i.e., S = (S1…Sn+1)
such that s = S1 + … + Sn+1

K’

C’C
K

a
s s’

an
d

an
d

an
d

outpu
t

ne
g

A S S’

and

C s.t.
Dec(C)=a∧s

C
s.t.Dec(C)=s∧s

’

Dec

Enc
a

output

and

D

and

ne
g

ISW Compiler: High level

20

2. Wires:
Each wire
w = a ∧ b

Wire bundle carrying encoding
C such that w = Dec(C)

Main challenge: computing on encoded inputs!

a
s s’

an
d

an
d

an
d

outpu
t

ne
g

A S S’

and

C s.t.
Dec(C)=a∧s

C
s.t.Dec(C)=s∧s

’

Dec

Enc
a

output

and

D

and

ne
g

ISW Compiler: High level

21

3. Gates: Gadgets built from standard
gates operating on encodings

Main challenge: algorithm to securely compute AND!

*

Uses refreshing
protocol

Theorem: A compiler that makes any circuit resilient to adversary that
probes up to n wires in C’

ISW Compiler: Results

K’
C’

C
K

Blow-up in size: O(n2)
for each AND gate in C

Leakage bounded per
observation: n wires

Drawback: L only probing oblivious of many wires

22

Proofs in n-probing model: Systematic and simple
tool to find n-th variate flaws in masking schemes

Prouff-Rivain-2010: Larger fields & more efficient

Leakage models for
masking

23

More powerful
leakages

New model for circuits

input outp
ut

Bounded independent leakages

L R

Assumption: Processors leak independently!

f(L,T) g(R,T)

T

Processors can communicate with each other –
Think of it as a 2-party protocol!

Circuit C’

 Everything that is touched on a processor leaks!

Additive masking? Insecure: learn parities of L & R

Realistic? Includes many functions, e.g. weighted sums

24

n bits f - Arbitrary efficient functions

- Ony restriction: input shrinking, i.e., c < n

c bits

Bounded leakage function:

25

Inner Product Masking
Sample L,R uniformly in {0,1}n s.t. S= <L,R> = Σ Li*Ri
and store parts separately on two processors

n n

RL

f(L) g(
R)

?

Thm [DDV10]: if leakage is bounded in total to c bits then
adversary learns nothing about S

L

R
Extract ̴̴̴ uniform

High min-entropy and
independent sources

g
(R,X,Y)

Correctness: <L,R>=<L’,R’>f
(L,X,Y)

26

Continuous setting?
Idea: refreshing protocol for IP maskings –
Prob. algorithm: (L,R) (L’,R’) fresh encoding of <L,R>

1. Sample
random
 X L

2. Update state to
 R’= R + X
3. Sample
random
 Y R’

4. Update state
to
 L’= L + Y

X
L R

R’

Y

L’

Contrived attack
reveals S

 cannot be proven

S
Refresh
(L,R)

Refresh
(L,R)

<L’,R’ > = <L + Y,
R’>
 = <L,R’> +
<Y,R’>
 = <L,R +
X>
 = <L,R>
+<L, X>
 = <L,R>

Simple attempt:

Solution: New protocol with leak-free source [DF12]

IP Compiler: High level

1. Wires and state is encoded using IP masking

K’

C’C
K

a
S S’

an
d

an
d

an
d

outpu
t

ne
g

(L,R) (L’,R’)
(L’’,R’’

)

and

(L,R) s.t.
<L,R>=a∧S

(L,R) s.t.
<L,R>=S∧S’

Dec

Enc
a

S S’

output

and

(L,R)

and

ne
g

2. Gates are replaced by protocols working on IP masking

 Most difficult: protocol to compute AND (see DF12)

27

28

The IP masking compiler

x

Theorem [DF12]:
A new information theoretic secure compiler with
security against continuous independent leakage

K’
C’

C
K

Blow-up in size: O(n2)
for each AND gate in C

IP masking in practice?

Leakage bounded per exec.:
c bits from each
processor

Leakage models for
masking

29

IP masking in practice

30

IP Masking in practice?
(BFGV12)
Analyzed for small security parameter n –
Security outperforms Boolean masking

Main reason: Non-linear masking vs. linear masking

Mutual information
between HW
leakage and secret

Weaker dependency between leakage & secret for IP masking

x

Green curve: Boolean
masking with 3 random
shares in GF(28)Red curve: IP masking
with 3 random shares in
GF(28)

Implementation of AES

31

IP masked AES on 8-bit microcontroller

Performance: Runs in 1.9 Mio clock cycles for n=2

Minimize costs for masked multiplication:

• Use squaring whenever possible it’s cheap!

• Minimize multiplications in SubBytes

• Refreshing with complexity O(n) instead O(n2)

IP Masking “lifted” to GF(28)

Unfortunately small univariate bias in IP-masking
[Prouff-Rivain-Roche-14]

But: Bias is small Future work: still exp. security?

Leakage models for
masking

32
Noisy leakages

Bounded leakage in
practice
Are leakages bounded? Probably not...

33

Theoretician‘s perspecitve: beautiful concept

• Measurements described by large data

• Not clear how to guarantee/verify bounded
leakages in practice

Physical leakages are inherently noisy

Difficulty in many attacks: how to eliminate the noise?

Noisy leakages
Noisy leakage model: Chari et al. Crypto‘99

No quantitative bound on leakage, but leakage is noisy

C1

C2

…

...

Cn

Enc(s)
...

Leakage is Ci + Gaussian noise

34

Chari et al. only consider security of a single masked secret

Prouff-Rivain, Eurocrypt 13:
• Prove security of a masked implementation of the AES

Long-standing open question: Generlize to computation

• Generlized noise model (not only Gaussian noise)

Noisy functions

e.g. N(Ci): compute Hamming
weight and add Gaussian noise

C1

C2

…

...

Cn

Enc(s)
...

Noisy function N: adv. learns N(Ci)

Weighted average over
Noise distribution

Alternative interpretation: MI(X, N(X)) < |X| p

35

All p-noisy functions N s.t. EN(X)=y Dist(Pr[X=x] ; Pr[X=x | N(X)=y]) <
p

Pr[X=x]

X

Pr[X=x | N(X)=y]

X

Example p = 0: N is very noisy = non-informative leakage
Example p ≈ 1: N is identity = very informative leakage

Circuits for noisy leakage

x

K’
C’

C
K

Compiler of ISW03
with leak-free gates

Adversary obtains noisy version of
each wire: N(wi)

Drawbacks of the analysis:
• Leak-free gates: no leakage from refreshing
• Security argument only for random-message attack
• Very technical proof

36

No quantitative bound on amount of leakage

Duc-Dziembowski-F 14:

ISW03 is secure against noisy leakages
• No leak-free gates
• Full simulation-based security analysis
• Unifying leakage models:
 n-probing security security against noisy leakage

37

x

K’
C’

C
K

Compiler of ISW03 Same noisy leakage model as PR13

Nice tool: proofs in n-probing model
much simpler than proofs in noisy model

38

Proof idea
New simpler noise model: Random probing

C1

C2

…

...

Cn
+1

f(Ci) = Ci with prob. q;
otherwise f(Ci) = „?“ ...

f(C1)

f(C2)

f(Cn+
1)

Step 1: learn S only if „lucky“ for each random probe
secure in n-probing secure in random probing

(f is a q-random probing function with q < p|X|)

Step 2: noisy leakage = random probing (technical)

For any p-noisy function N there exists a simulated noise
distribution N ‘ s.t. for any x: N‘(f(x)) = N (x)

(1) + (2): n-probing secure against noisy leakages

Leakage models for
masking

39
Provably secure implementations?

Provably secure?

40

Theoretician‘s answer: Beautiful & natural questions

Is cryptography possible with weak (= non-uniform) keys?

Probably not yet!

 Proofs in n-probing model to check for n-th order flaws

Why leakage resilient crypto?

Why to care in practice? Proofs are powerful tool!

Systematic analysis to avoid flaws

New ideas and schemes

Formal requirements on hardware

 IP masking an alternative for additive masking?

 How much noise do I need to use masking?

Thank you!

Thanks to the EU/FP7 for funding.
Thanks to organizers of COSADE for inviting me.

Thanks to co-authors for nice research questions and fun
collaborations.

Thanks to Google for pictures.

Real:

42

K’
C’C

K

X Y

Security notion

X

 Y,

Noise(wires)

indistinguishable

outputoutput

Ideal:

Adversary learns no more than by black-box access

Noise(wires)

Simulator

Standard proof method: build simulator that can
simulate environment (=leakage) for adversary

 Adversary believes he is in real world
 Outputs are indistinguishable

Bounded leakages: used in most papers on
theoretical leakage resilience

Prominent model in theory

K’
C’

C
K

43

Bounded leakage: natural and clean abstraction
 „everything leaks“

x

n bits f
- Any efficient function

- Ony restriction: input shrinking,

 i.e., c < n

c bits

Impossible to build leakage resilient circuit compilers

44

The IP masking compiler

x

Theorem [DF12]:
A new information theoretic secure compiler with
security against continuous independent leakage

K’
C’

C
K

Blow-up in size: O(n2)
for each AND gate in C

Leak-free gate: leaks on inputs but not from internals

 Much less efficient!

Leakage bounded per exec.:
c bits from each
processor

Enc(
0)

Enc(
0)

(A,B) s.t. <A,B> = 0

Goldwasser-Rothblum-2012: Eliminate leak-free gates

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44

