Leakage Resilient Circuits (or: Leakage models for masking)

Sebastian Faust EPFL, Switzerland

<u>Goal of Leakage resilient crypto:</u> Proof-driven security analysis for implementations

Provable Security

1. Define model & security notion

Example: Digital signatures

Provable Security 1. Define model & security notion

Example: Digital signatures

Provable Security

1. Define model & security notion

2. Design cryptoscheme

Usually described in mathematical language

3. Prove security

Reduce security of complex scheme to **simple** assumption, e.g., factoring

Information-theoretic proofs: information is "useless" to the adversary

Shows security not only against one specific attack, but any attack within the model (if assumption holds)

Security proven but in what model?

Goals of leakage resilience

Incorporate leakage into model

Develop new countermeasures

Provably secure implementations ?

Best answered by looking at examples

Basic idea of masking

Can protect against univariate attacks

Insecure when considering multivariate distributions

Basic idea of masking

Use **n** shares to protect against **(n-1)**-variate attacks

Increasing number of shares:

Increases attack order
 Increases attack difficulty

Two main questions:

- How to use shared secrets to protect cryptoscheme
- How to model security of complext algorithms

Leakage resilient circuits Formalization of masking by Ishai-Sahai-Wagner-03

Arbitrary computation modeled as a circuit Only abstraction to describe "arbitrary computation" 🗆 can also be software...

Circuit Compiler: Run once at production time (nodeabage) ption of circuit C with key K (e.g., OUTPUT OF FOR OF CIRCUIT C' with key K' (C' is Cohebilities: C[K] and C'[K'] have same Additionality: C'[K'] leakage resilient for many executions adversary Formed of the formalize for leakage

Continuous leakage: many observations are possible

What does it mean?

For unbounded adversary: MI(K ; f(.), ... f(.)) < negl Even more: Cannot break underlying security notion

n-Probing adversary (ISW03)
Adversary gets **n** intermediate values of computation
I L = { values on **n** adversarial chosen wires }

n-probing attack formalization of **n**-variate attacks

Basic ingredient: encoding scheme

S Encode C := (C1...Cn) s.t. S=C1+...+ Cn Insecure in continuous setting!

Continuous leakage

Idea: Prob. algorithm to refresh additive encoding:

Input: C = Enc(s)
Output: fresh encoding C' = Enc(s)

masking, i.e., **S** = (S1...Sn+1) such that **s** = S1 + ... + Sn+1

Main challenge: computing on encoded inputs!

ISW Compiler: Results

<u>Theorem</u>: A compiler that makes **any circuit** resilient to adversary that probes up to **n** wires in **C**'

<u>Proofs in n-probing model:</u> Systematic and simple tool to find **n**-th variate flaws in masking schemes

Prouff-Rivain-2010: Larger fields & more efficient

Drawback: L only probing I oblivious of many wires

New model for circuits Bounded independent leakages

Realistic? Includes many functions, e.g. weighted sums **Additive masking?** Insecure: learn parities of L & R

Inner Product Masking Sample L,R uniformly in {0,1}n s.t. S= <L,R> = Σ Li*Ri and store parts separately on two processors

Thm [DDV10]: if leakage is bounded in total to c bits then adversary learns nothing about S

Continuous setting?

Idea: refreshing protocol for IP maskings – Prob. algorithm: (L,R) [] (L',R') fresh encoding of <L,R>

Simple attempt:

IP Compiler: High level

1. Wires and state is encoded using IP masking

2. Gates are replaced by protocols working on IP masking **Most difficult:** protocol to compute AND (see DF12)

The IP masking compiler

Theorem [DF12]:

A new **information theoretic** secure compiler with security against **continuous independent leakage**

IP masking in practice?

Weaker dependency between leakage & secret for IP masking Main reason: Non-linear masking vs. linear masking

Implementation of AES

IP masked AES on 8-bit microcontroller IP Masking "lifted" to GF(28)

Performance: Runs in 1.9 Mio clock cycles for n=2

Minimize costs for masked multiplication:

- Use squaring whenever possible [] it's cheap!
- Minimize multiplications in SubBytes
- Refreshing with complexity O(n) instead O(n2)
 Unfortunately small univariate bias in IP-masking [Prouff-Rivain-Roche-14]

But: Bias is small [] Future work: still exp. security?

Bounded leakage in Theoretician's perspecitve: beautiful concept Are leakages bounded? Probably not...

- Measurements described by large data
- Not clear how to guarantee/verify bounded leakages in practice

Physical leakages are inherently noisy Difficulty in many attacks: how to eliminate the noise?

Noisy leakage model: Chari et al. Crypto'99 No quantitative bound on leakage, but leakage is noisy

Chari et al. only consider security of a single masked secret

Long-standing open question: Generlize to computation

Prouff-Rivain, Eurocrypt 13:

- Prove security of a masked implementation of the AES
- Generlized noise model (not only Gaussian noise)

Noisy functions

Noisy function N: adv. learns N(Ci) e.g. N(Ci): compute Hamming weight and add Gaussian noise

All p-noisy functions N s.t. EN(X)=y Dist(Pr[X=x]; Pr[X=x | N(X)=y]) <

Weighted average over Noise distribution

Alternative interpretation: MI(X, N(X)) < |X| p

Example p = 0: N is very noisy = non-informative leakage Example $p \approx 1$: N is identity = very informative leakage

No quantitative bound on amount of leakage Drawbacks of the analysis:

- Leak-free gates: no leakage from refreshing
- Security argument only for random-message attack
- Very technical proof

ISW03 is secure against noisy leakages

- No leak-free gates 😃
- Full simulation-based security analysis U
- Unifying leakage models: *n*-probing security
 ^I security against noisy leakage

Nice tool: proofs in n-probing model much simpler than proofs in noisy model

Proof idea New simpler noise model: Random probing

Step 1¹/₁ learn S only if "lucky" for each random probe secure in n-probing □ secure in random probing <u>Step 2</u>: noisy leakage = random probing (technical) For any p-noisy function N there exists a simulated noise distribution N ' s.t. for any x: N'(f(x)) = N (x) (f is a q-random probing function with q < p|X|)</p>
(1) + (2): n-probing □ secure against noisy leakages

Provably secure? Probably not y Why leakage resilient crypto?

Theoretician's answer: Beautiful & natural questions

Is cryptography possible with weak (= non-uniform) keys?

Why to care in practice? Proofs are powerful tool!Systematic analysis to avoid flawsProofs in n-probing model to check for n-th order flaws

New ideas and schemes

IP masking an alternative for additive masking?

Formal requirements on hardware I How much noise do I need to use masking?

Thank you!

Thanks to the EU/FP7 for funding. Thanks to organizers of COSADE for inviting me. Thanks to co-authors for nice research questions and fun collaborations.

Security notion

Adversary learns no more than by black-box access

Standard proof method: build simulator that can simulate environment (=leakage) for adversary

Adversary believes he is in real world
 Outputs are indistinguishable

Bounded leakage: natural and clean abstraction ______,everything leaks"

Impossible to build leakage resilient circuit compilers

The IP masking compiler Theorem [DF12]: A new information theoretic secure compiler with security against continuous independent leakage

Blow-up in size: O(n2) for each AND gate in C

Κ

Leakage bounded per exec.: c bits from each

0)

processor Leak-free gate: leaks on inputs but not from internals

Enc((A,B) s.t. <A,B> = 0
O)
Goldwasser-Rothblum-2012: Eliminate leak-free gates
I Much less efficient!