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Figure: DPA Attack
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Introduction (cont.)

@ Univariate DPA

e Univariate distinguisher is applied on a selected sample point
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Introduction (cont.)

@ Univariate DPA
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@ Multivariate DPA
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@ best result is chosen
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Introduction (cont.)

@ Univariate DPA
e Univariate distinguisher is applied on a selected sample point
@ Multivariate DPA

e univariate distinguisher is applied on every sample point independently
@ best result is chosen
e performs poorly when the SNR of the leakage are low

@ Power traces are pre-processed to increase the SNR of the leakage
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Introduction (cont.)

o Existing Pre-processing techniques
@ Comb filter
Q FFT
© Multiband filter
@ Wavelet transform etc
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Introduction (cont.)

o Existing Pre-processing techniques
@ Comb filter
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et al. in [2]
@ requires semi-profiling approach
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Introduction (cont.)

Existing Pre-processing techniques

@ Comb filter

Q FFT

© Multiband filter

@ Wavelet transform etc

Mostly, heuristic in nature

Optimal pre-processing using linear FIR has been proposed by Oswald
et al. in [2]
@ requires semi-profiling approach

Is optimal pre-processing possible in non-profiling DPA attacks?
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Matched Filter

@ The output leakage /, of a linear FIR of order T applied to the traces

I = {I07 to 7IT—1}
T-1
IO - htlt (1)
t=0
where h = {hg,--- , ht_1} is the impulse response of the filter
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Matched Filter

@ The output leakage /, of a linear FIR of order T applied to the traces

I = {I()a"' 7IT—1}
T-1
lo="Y" hely (1)
=0
where h = {hg,--- , ht_1} is the impulse response of the filter
o Let centered (w.r.t. mean leakage) trace | = {l,...,l7_1}
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Matched Filter

@ The output leakage /, of a linear FIR of order T applied to the traces

I = {I07"' 7IT—1}
T-1
lo="Y" hely (1)
=0
where h = {hg,--- , ht_1} is the impulse response of the filter
o Let centered (w.r.t. mean leakage) trace | = {l,...,l7_1}

={do+f70,“' ,d-,-,1—|—n7-,1}:d+n
@ SNR of /, is given by

h'd|? lh'd|?
Rl — =
S E[[n'n]2] ~ WXIyh
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Matched Filter

@ The output leakage /, of a linear FIR of order T applied to the traces

I = {I07"' 7IT—1}
T-1
lo =" hel (1)
t=0
where h = {hg,--- , ht_1} is the impulse response of the filter
o Let centered (w.r.t. mean leakage) trace | = {l,...,l7_1}

={do+f70,“' ,d-,-,1—|—n7-,1}:d+n
@ SNR of /, is given by

h'd|? lh'd|?
Rl — =
S E[[n'n]2] ~ WXIyh

@ Matched filter maximizes the SNR of /, by suitably choosing the
impulse response h
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Matched Filter (cont.)

@ The impulse response of the matched filter for the trace | is given by

(3. 4])
hyr = X\ 'd
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Matched Filter (cont.)

@ The impulse response of the matched filter for the trace | is given by

(3. 4])
hyr = X\ 'd

@ Both X and d need the secret key to estimate, thus are not feasible
in non-profiling DPA
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Optimum Linear Filter in Non-profiling DPA

e We introduce Signal Ratio (SR) of the output signal /,:

ople — IMd® _ |Wd]®
T E[WI2] ~ WZ.h
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Optimum Linear Filter in Non-profiling DPA

e We introduce Signal Ratio (SR) of the output signal /,:
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SR of that also reaches its maximum
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Optimum Linear Filter in Non-profiling DPA

e We introduce Signal Ratio (SR) of the output signal /,:

ople — IMd® _ |Wd]®
T E[WI2] ~ WZ.h

@ The SNR of the output leakage /, reaches its maximum if and only if
SR of that also reaches its maximum

@ Impulse response of the optimum linear filter which maximizes the SR
of the output signal /,
hope = £, 'd
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Optimum Linear Filter in Non-profiling DPA

e We introduce Signal Ratio (SR) of the output signal /,:

oo IWdP_ |wdp
E[|n1]2] WX_h
@ The SNR of the output leakage /, reaches its maximum if and only if
SR of that also reaches its maximum

@ Impulse response of the optimum linear filter which maximizes the SR
of the output signal /,
hope = £, 'd

@ The estimation of d still requires the correct key
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Optimum Linear Filter in Non-profiling DPA (cont.)

@ Extension of the conventional leakage model over multiple time
instants [1]:
o Conventional leakage model

Lt* - at* W(Sk*) + Nt*
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Optimum Linear Filter in Non-profiling DPA (cont.)

@ Extension of the conventional leakage model over multiple time
instants [1]:
o Conventional leakage model

Lt* = at* W(Sk*) + Nt*
o Multivariate leakage model

Lt: at\U(Sk*)"‘Nt, t() S t< t0+7—
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Optimum Linear Filter in Non-profiling DPA (cont.)

@ Extension of the conventional leakage model over multiple time
instants [1]:
o Conventional leakage model

Lt* = at* W(Sk*) + Nt*
o Multivariate leakage model
Lt: at\U(Sk*)"‘Nt, t() S t< t0+7—

@ Incorporating algorithmic noise

Lt = at(\u(Sk*) =+ U + C) + Nt (2)
=a(l +c)+ N, to<t<to+7  (3)
where N = {Ny,, -+, Ny1r—1} has mean vector 0
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Optimum Linear Filter in Non-profiling DPA (cont.)

e We limit the attack window to {tp, - ,to + 7 — 1}
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Optimum Linear Filter in Non-profiling DPA (cont.)

e We limit the attack window to {tp, - ,to + 7 — 1}
e From Eq. (3), d = (i — E[/] + c)a where a = {ao,--- ,a,_1}
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Optimum Linear Filter in Non-profiling DPA (cont.)

e We limit the attack window to {tp, - ,to + 7 — 1}
e From Eq. (3), d = (i — E[/] + c)a where a = {ao,--- ,a,_1}

@ Thus,
hW(i— E[l]+c)a]®> |nal?

o |
SRE = h's h * Wx,h
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Optimum Linear Filter in Non-profiling DPA (cont.)

e We limit the attack window to {tp, - ,to + 7 — 1}
e From Eq. (3), d = (i — E[/] + c)a where a = {ao,--- ,a,_1}

@ Thus, ) )
W(i—E[l h
i W= El+c)aP  wal
WX, h WX, h
@ Resulting in
hope = £, ta o< I
where £ is the mean vector of leakage L = {Lo,--- ,L,—1} (i.e

leakage of the selected window)
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Approximate Optimum Linear Filter in Non-profiling DPA

o Disadvantages of hgp;

o Estimation of ¥ requires large number of power traces
o Computationally intensive
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Approximate Optimum Linear Filter in Non-profiling DPA

o Disadvantages of hgp;

o Estimation of ¥ requires large number of power traces
o Computationally intensive

o Approximation of hopt: happr = diag(Zy) tp i.e.

hapor = { E[QO] T E[I2-T_1] }

O-LO ULT_l
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Approximate Optimum Linear Filter in Non-profiling DPA

o Disadvantages of hgp;

o Estimation of ¥ requires large number of power traces
o Computationally intensive

o Approximation of hopt: happr = diag(Zy) tp i.e.

hapor = { E[QO] T E[I2-T_1] }

ULO ULT_l

@ The approximate optimum filter h,,, neglects the correlation
between the leakages of two different sample points
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Approximate Optimum Linear Filter in Non-profiling DPA

o Disadvantages of hgp;

o Estimation of ¥ requires large number of power traces
o Computationally intensive

o Approximation of hopt: happr = diag(Zy) tp i.e.

hapor = { E[éO] T E[I2-T_1] }

ULO ULT_l

@ The approximate optimum filter h,,, neglects the correlation
between the leakages of two different sample points

@ When leakages of the different sample points are significantly
correlated: perform the attack on a linear transformation of the power
traces such as in frequency domain (using FFT), eigenvector domain
(using PCA)
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Experimental Evaluation

@ The performed attacks are:
o CPA on the unprocessed traces
o CPA on the output of the Optimum filter (OF)
o CPA on the output of the Approximate Optimum filter (AOF)
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Experimental Evaluation

@ The performed attacks are:

o CPA on the unprocessed traces
o CPA on the output of the Optimum filter (OF)
o CPA on the output of the Approximate Optimum filter (AOF)

@ The attacks are performed in the following domains:

e Time domain.
o Frequency domain
o Eigenvector domain
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Experimental Evaluation

@ The performed attacks are:
o CPA on the unprocessed traces
o CPA on the output of the Optimum filter (OF)
o CPA on the output of the Approximate Optimum filter (AOF)

@ The attacks are performed in the following domains:
e Time domain.
o Frequency domain
o Eigenvector domain
@ Experiments are performed in four scenarios:
o Scenario (a): on the acquire power traces
o Scenario (b): by adding high uncorrelated noise

o Scenario (c): by adding small correlated noise
o Scenario (d): by adding both the correlated and uncorrelated noise
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Experimental Result: Scenario (a)

CPA in Time Domain —+— AOF on PCs
OF in Time Domain < CPA in Freq Domain - -o-- -
AOF in Time Domain ------ AOF in Freq Domain e

CPAonPCs &
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Average Guessing Entropy

3 6 9 12 15 18 21 24 27 30
Number of Traces / 100

Figure: Results on Acquired Traces of AES Encryption
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Experimental Result: Scenario

CPA in Time Domain —+— AOF on PCs
OF in Time Domain <~ CPA in Freq Domain - -o-- -
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Figure: Results on Acquired Traces adding Uncorrelated Noise
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Experimental Result: Scenario (c)

CPA in Time Domain —+— AOF on PCs
OF in Time Domain < CPA in Freq Domain - -o-- -
AOF in Time Domain ------ AOF in Freq Domain e
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Figure: Results on Acquired Trace adding Correlated Noise
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Experimental Result: Scenario (d)

CPA in Time Domain —+— AOF on PCs
OF in Time Domain < CPA in Freq Domain -- -o-- -
AOF in Time Domain ------ AOF in Freq Domain -
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Figure: Results on Acquired Traces adding both the Correlated Noise and
Uncorrelated Noise
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Comparison with profiling Stochastic attack

128 — T T T T T 1 T
Stochastic HD in (a) —+—
AOF in Freq domain in (a) —8—
64 Stochastic HD in (b) -+ ]
AOF in Freq domain in (b) ---&---
324 Stochastic HD in (c) -+
AOF in Freq domain in (c) &
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Figure: Results of Profiling Stochastic Attack using HD model and CPA using
AOF in Frequency Domain
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@ Two linear filters have been proposed for optimal pre-processing in
non-profiling DPA
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@ Two linear filters have been proposed for optimal pre-processing in
non-profiling DPA

@ The experimental results show significant decrease in the average
guessing entropy of CPA using the proposed filter
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@ Two linear filters have been proposed for optimal pre-processing in
non-profiling DPA

@ The experimental results show significant decrease in the average
guessing entropy of CPA using the proposed filter

@ One proposed filter has been compared with profiling Stochastic
attack
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Thank You!
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