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Introduction (cont.)

Univariate DPA

Univariate distinguisher is applied on a selected sample point

Multivariate DPA

univariate distinguisher is applied on every sample point independently
best result is chosen
performs poorly when the SNR of the leakage are low

Power traces are pre-processed to increase the SNR of the leakage
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Introduction (cont.)

Existing Pre-processing techniques
1 Comb filter
2 FFT
3 Multiband filter
4 Wavelet transform etc

Mostly, heuristic in nature

Optimal pre-processing using linear FIR has been proposed by Oswald
et al. in [2]

requires semi-profiling approach

Is optimal pre-processing possible in non-profiling DPA attacks?
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Matched Filter

The output leakage lo of a linear FIR of order T applied to the traces
l = {l0, · · · , lT−1}

lo =
T−1∑
t=0

ht lt (1)

where h = {h0, · · · , hT−1} is the impulse response of the filter

Let centered (w.r.t. mean leakage) trace l = {l0, . . . , lT−1}
= {d0 + n0, · · · , dT−1 + nT−1} = d + n

SNR of lo is given by

SNR lo =
|h′d|2

E [|h′n|2]
=
|h′d|2
h′ΣNh

Matched filter maximizes the SNR of lo by suitably choosing the
impulse response h
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Matched Filter (cont.)

The impulse response of the matched filter for the trace l is given by
([3, 4])

hMF = Σ−1
N d

Both ΣN and d need the secret key to estimate, thus are not feasible
in non-profiling DPA
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Optimum Linear Filter in Non-profiling DPA

We introduce Signal Ratio (SR) of the output signal lo :

SR lo =
|h′d|2
E [|h′l|2]

=
|h′d|2
h′ΣLh

The SNR of the output leakage lo reaches its maximum if and only if
SR of that also reaches its maximum

Impulse response of the optimum linear filter which maximizes the SR
of the output signal lo

hopt = Σ−1
L d

The estimation of d still requires the correct key
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Optimum Linear Filter in Non-profiling DPA (cont.)

Extension of the conventional leakage model over multiple time
instants [1]:

Conventional leakage model

Lt∗ = at∗Ψ(Sk∗) + Nt∗

Multivariate leakage model

Lt = atΨ(Sk∗) + Nt , t0 ≤ t < t0 + τ

Incorporating algorithmic noise

Lt = at(Ψ(Sk∗) + U + c) + Nt (2)

= at(I + c) + Nt , t0 ≤ t < t0 + τ (3)

where N = {Nt0 , · · · ,Nt0+τ−1} has mean vector 0
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Optimum Linear Filter in Non-profiling DPA (cont.)

We limit the attack window to {t0, · · · , t0 + τ − 1}
From Eq. (3), d = (i − E [I ] + c)a where a = {a0, · · · , aτ−1}

Thus,

SR lo =
|h′(i − E [I ] + c)a|2

h′ΣLh
∝ |h

′a|2
h′ΣLh

Resulting in
hopt = Σ−1

L a ∝ Σ−1
L µL

where µL is the mean vector of leakage L = {L0, · · · , Lτ−1} (i.e
leakage of the selected window)
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Approximate Optimum Linear Filter in Non-profiling DPA

Disadvantages of hopt
Estimation of ΣL requires large number of power traces
Computationally intensive

Approximation of hopt : happr = diag(ΣL)−1µL i.e.

happr =

{
E [L0]

σ2
L0

, · · · , E [Lτ−1]

σ2
Lτ−1

}

The approximate optimum filter happr neglects the correlation
between the leakages of two different sample points

When leakages of the different sample points are significantly
correlated: perform the attack on a linear transformation of the power
traces such as in frequency domain (using FFT), eigenvector domain
(using PCA)
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Experimental Evaluation

The performed attacks are:

CPA on the unprocessed traces
CPA on the output of the Optimum filter (OF)
CPA on the output of the Approximate Optimum filter (AOF)

The attacks are performed in the following domains:

Time domain.
Frequency domain
Eigenvector domain

Experiments are performed in four scenarios:

Scenario (a): on the acquire power traces
Scenario (b): by adding high uncorrelated noise
Scenario (c): by adding small correlated noise
Scenario (d): by adding both the correlated and uncorrelated noise
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Experimental Result: Scenario (a)
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Figure: Results on Acquired Traces of AES Encryption
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Experimental Result: Scenario (b)
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Figure: Results on Acquired Traces adding Uncorrelated Noise
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Experimental Result: Scenario (c)
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Figure: Results on Acquired Trace adding Correlated Noise
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Experimental Result: Scenario (d)
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Comparison with profiling Stochastic attack
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Figure: Results of Profiling Stochastic Attack using HD model and CPA using
AOF in Frequency Domain
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Summary

Two linear filters have been proposed for optimal pre-processing in
non-profiling DPA

The experimental results show significant decrease in the average
guessing entropy of CPA using the proposed filter

One proposed filter has been compared with profiling Stochastic
attack
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Thank You!
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