Addition with Blinded Operands

technicolor

Mohamed Karroumi* • Benjamin Richard • Marc Joye

Addition with Blinded Operands

technicolor

Mohamed Karroumi* • Benjamin Richard • Marc Joye

Outline

1 Preliminary Background
■ DPA attacks and countermeasures
■ Masking and switching method

2 A new DPA resistant addition algorithm

- Basic algorithm
- DPA resistant addition algorithm

3 Application to XTEA
■ XTEA overview

- Preventing first-order DPA

■ Performance analysis
4 Conclusion

Outline

1 Preliminary Background

- DPA attacks and countermeasures
- Masking and switching method

2 A new DPA resistant addition algorithm
■ Basic algorithm

- DPA resistant addition algorithm

3 Application to XTEA
■ XTEA overview

- Preventing first-order DPA

■ Performance analysis

4 Conclusion

Differential Power Analysis

■ Side channel attack
■ DPA introduced by Paul Kocher et al. 1998
■ Recovers secret keys used for en/decryption

- Some a priori knowledge of the algorithm is required
\square
- Power consumption depends on data being processed

Differential Power Analysis

■ Side channel attack
■ DPA introduced by Paul Kocher et al. 1998
■ Recovers secret keys used for en/decryption

- Some a priori knowledge of the algorithm is required

■ Power consumption depends on data being processed

- Power measurements give hints about processed internal data
- When key cannot be found directly in a single power trace

Differential Power Analysis

■ Side channel attack
■ DPA introduced by Paul Kocher et al. 1998
■ Recovers secret keys used for en/decryption

- Some a priori knowledge of the algorithm is required

■ Power consumption depends on data being processed

- Power measurements give hints about processed internal data

■ When key cannot be found directly in a single power trace

- Gather many power consumption curves

■ Assume a part of the key value, divide data into two groups(0 and 1 for chosen bit), calculate mean value curve of each group

- Correlation between predicted power consumption and actual power consumption
- If the subkey guess is correct, then the prediction (likely) matches the physical measurement

DPA results example

■ DPA and power curves superposition
■ Correct subkey predicted \Rightarrow spikes in the differential curves

- Exhaustive search for remaining bits of the key

technicolor

DPA results example

- DPA and power curves superposition
- Correct subkey predicted \Rightarrow spikes in the differential curves
- Repeat the process for other parts of the key
- Exhaustive search for remaining bits of the key

technicolor

A DPA countermeasure

■ An approach is to randomize the intermediate results

- the power consumption of the device processing randomized data is not correlated to the intermediate results
- Masking: can be applied in software or hardware

A DPA countermeasure

■ An approach is to randomize the intermediate results

- the power consumption of the device processing randomized data is not correlated to the intermediate results

■ Masking: can be applied in software or hardware
■ Split intermediate variables into at least two shares during execution (Chari et al. 1999)

- Power leakage of one share does not leak sensitive information
- Two shares (a random mask and masked variable) are sufficient to protect against first-order DPA
- Two common masking techniques

A DPA countermeasure

■ An approach is to randomize the intermediate results

- the power consumption of the device processing randomized data is not correlated to the intermediate results

■ Masking: can be applied in software or hardware
■ Split intermediate variables into at least two shares during execution (Chari et al. 1999)

- Power leakage of one share does not leak sensitive information
- Two shares (a random mask and masked variable) are sufficient to protect against first-order DPA

■ Two common masking techniques
■ Boolean masking: $x \rightarrow\left(\mathbf{X}=x \oplus r_{x}, r_{x}\right)$

- Arithmetic masking: $x \rightarrow\left(\mathbf{X}=x-r_{x}, r_{x}\right)$

A DPA countermeasure

■ An approach is to randomize the intermediate results

- the power consumption of the device processing randomized data is not correlated to the intermediate results
- Masking: can be applied in software or hardware

■ Split intermediate variables into at least two shares during execution (Chari et al. 1999)

- Power leakage of one share does not leak sensitive information
- Two shares (a random mask and masked variable) are sufficient to protect against first-order DPA

■ Two common masking techniques
■ Boolean masking: $x \rightarrow\left(\mathbf{X}=x \oplus r_{x}, r_{x}\right)$

- Arithmetic masking: $x \rightarrow\left(\mathbf{X}=x-r_{x}, r_{x}\right)$
\Rightarrow For algorithms that combine both types of operations, a secure conversion from one masking to another must be used (Messerges 2000)

Mask-switching methods

Example

- Securely compute $(A+B) \oplus C$ with boolean masked variables
- 2 B-to-A and 1 A-to-B conversions needed

$$
(A+B) \oplus C \oplus\left[\left(r_{A}+r_{B}\right) \oplus r_{C}\right]
$$

Mask-switching methods

Example

- Securely compute $(A+B) \oplus C$ with boolean masked variables
- 2 B-to-A and 1 A-to-B conversions needed
- B-to-A is efficient and costs 7 ops (Goubin 2001)
- A-to-B is less efficient and costs $5 k+5$ ops (Goubin)

$(A+B) \oplus C \oplus\left[\left(r_{A}+r_{B}\right) \oplus r_{C}\right]$

Mask-switching with LUTs

■ In 2003, Coron and Tchulkine propose to use pre-computed tables to perform A-to-B conversion

■ A table G is used to convert nibbles (i.e. 4 or 8 -bit part of the variables) from arithmetic to Boolean masking

- The input of the table G is masked (additively) and viewed during conversion step as a memory offset information
- The table offset contains the corresponding (Boolean) masked variable
\square nronnsed hv Dehraize in 2012

Mask-switching with LUTs

■ In 2003, Coron and Tchulkine propose to use pre-computed tables to perform A-to-B conversion

■ A table G is used to convert nibbles (i.e. 4 or 8 -bit part of the variables) from arithmetic to Boolean masking

- The input of the table G is masked (additively) and viewed during conversion step as a memory offset information
- The table offset contains the corresponding (Boolean) masked variable

■ The method was later improved by Nei β e and Pulkus in 2004
■ Reduces the RAM consumption
\square proposed by Debraize in 2012

Mask-switching with LUTs

■ In 2003, Coron and Tchulkine propose to use pre-computed tables to perform A-to-B conversion

- A table G is used to convert nibbles (i.e. 4 or 8 -bit part of the variables) from arithmetic to Boolean masking
- The input of the table G is masked (additively) and viewed during conversion step as a memory offset information
- The table offset contains the corresponding (Boolean) masked variable

■ The method was later improved by Nei $\boldsymbol{\beta}$ e and Pulkus in 2004
■ Reduces the RAM consumption

- An extension to the above techniques was more recently proposed by Debraize in 2012

■ Offers better security

- Interesting for 8-bit CPUs

This Talk

Mask-switching method

$$
x-r_{x} \quad y-r_{y}
$$

$$
\mathbf{s}=(x+y) \oplus\left(r_{x}+r_{y}\right)
$$

Secure A-to-B (with LUTs)

$$
\xrightarrow[\text { (classical) }]{+}
$$

$$
(x+y)-\left(r_{x}+r_{y}\right)
$$

■ If we have only one addition (followed by boolean operations) can we avoid mask-switching?

This Talk

Mask-switching method

$$
\mathbf{s}=(x+y) \oplus\left(r_{x}+r_{y}\right)
$$

Secure A-to-B (with LUTs)

$$
(x+y)-\left(r_{x}+r_{y}\right)
$$

■ If we have only one addition (followed by boolean operations) can we avoid mask-switching?

New method

■ The new proposed algorithm is based on a more direct approacxh

$$
x \oplus r_{x} \quad y \oplus r_{y} \quad \stackrel{\text { Secure adder }}{\Longrightarrow}
$$

$$
\mathbf{s}=(x+y) \oplus\left(r_{x} \oplus r_{y}\right)
$$

Outline

1 Preliminary Background
■ DPA attacks and countermeasures

- Masking and switching method

2 A new DPA resistant addition algorithm
■ Basic algorithm

- DPA resistant addition algorithm

3 Application to XTEA
■ XTEA overview

- Preventing first-order DPA

■ Performance analysis

4 Conclusion

Our construction

- The goal is to securely compute $\mathbf{S}=(x+y) \oplus r_{S}$ from $\left(\mathbf{X}, r_{x}\right)$ and (\mathbf{Y}, r_{y}) and without compromising the x or y through DPA

Our construction

■ The goal is to securely compute $\mathbf{S}=(x+y) \oplus r_{s}$ from $\left(\mathbf{X}, r_{x}\right)$ and $\left(\mathbf{Y}, r_{y}\right)$ and without compromising the x or y through DPA

Idea: $x+y=x \oplus y \oplus \operatorname{carry}(x, y)$

- Construct an addition algorithm that takes blinded operands as input

$$
\begin{aligned}
\mathbf{S} & =(x+y) \oplus r_{s}=(x \oplus y \oplus c) \oplus r_{s} \\
& =\left(\mathbf{X} \oplus r_{x}\right) \oplus\left(\mathbf{Y} \oplus r_{y}\right) \oplus c \oplus r_{s} \\
& =\mathbf{X} \oplus \mathbf{Y} \oplus c \quad \text { by setting } r_{s}=r_{x} \oplus r_{y}
\end{aligned}
$$

Our construction

■ The goal is to securely compute $\mathbf{S}=(x+y) \oplus r_{s}$ from $\left(\mathbf{X}, r_{x}\right)$ and $\left(\mathbf{Y}, r_{y}\right)$ and without compromising the x or y through DPA

Idea: $x+y=x \oplus y \oplus \operatorname{carry}(x, y)$

- Construct an addition algorithm that takes blinded operands as input

$$
\begin{aligned}
\mathbf{S} & =(x+y) \oplus r_{s}=(x \oplus y \oplus c) \oplus r_{s} \\
& =\left(\mathbf{X} \oplus r_{x}\right) \oplus\left(\mathbf{Y} \oplus r_{y}\right) \oplus \mathbf{c} \oplus r_{s} \\
& =\mathbf{X} \oplus \mathbf{Y} \oplus c \quad \text { by setting } r_{s}=r_{x} \oplus r_{y}
\end{aligned}
$$

■ Find an algorithm that computes the carry of two variables
■ Ensure that all intermediate variables do not leak information

Addition algorithm

■ AND-XOR-and-double method
Input: $\quad(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)$
$1 \mathrm{~A} \leftarrow x \oplus y$; $\mathrm{B} \leftarrow x \& y ; \mathrm{C} \leftarrow 0$
2 For $i=1$ to $k-1$ do
$-C \leftarrow C \& A$

- $\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}$
$-C \leftarrow 2 . C$
(3) $\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{C}$

4 Return A

Addition algorithm

- AND-XOR-and-double method

$$
\begin{aligned}
& \text { Input: } \quad(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}} \\
& \text { Output: } s=x+y\left(\bmod 2^{k}\right)
\end{aligned}
$$

```
\(1 \mathrm{~A} \leftarrow x \oplus y ; \mathrm{B} \leftarrow x \& y ; \mathrm{C} \leftarrow 0\)
2 For \(i=1\) to \(k-1\) do
        - \(\mathrm{C} \leftarrow \mathrm{C} \& \mathrm{~A}\)
        - \(\leftarrow \leftarrow \mathrm{C} \oplus \mathrm{B}\)
        \(\square C \leftarrow 2 \cdot C\)
```

$3 \mathrm{~A} \leftarrow \mathrm{~A} \oplus \mathrm{C}$
4 Return A

- Right-to-left carry evaluation

Addition algorithm

- AND-XOR-and-double method

$$
\begin{aligned}
& \text { Input: } \quad(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}} \\
& \text { Output: } s=x+y\left(\bmod 2^{k}\right)
\end{aligned}
$$

$1 \mathrm{~A} \leftarrow x \oplus y$; $\mathrm{B} \leftarrow x \& y ; \mathrm{C} \leftarrow 0$
2 For $i=1$ to $k-1$ do

- $\mathrm{C} \leftarrow \mathrm{C} \& A$
- $\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}$
$\square \mathrm{C} \leftarrow 2 \cdot \mathrm{C}$
(3) $\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{C}$

4 Return A

- Right-to-left carry evaluation
- The carry is iteratively computed using A, B

Addition algorithm

■ AND-XOR-and-double method

$$
\begin{aligned}
& \text { Input: } \quad(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}} \\
& \text { Output: } s=x+y\left(\bmod 2^{k}\right)
\end{aligned}
$$

$1 \mathrm{~A} \leftarrow x \oplus y$; $\mathrm{B} \leftarrow x \& y ; \mathrm{C} \leftarrow 0$
2 For $i=1$ to $k-1$ do

- $\mathrm{C} \leftarrow \mathrm{C} \& \mathrm{~A}$
$-\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}$
$-C \leftarrow 2 \cdot C$
$3 \mathrm{~A} \leftarrow \mathrm{~A} \oplus \mathrm{C}$
4 Return A

■ Right-to-left carry evaluation

- The carry is iteratively computed using A, B
- Basis of our construction

Secure addition

Addition with blinded operands

Input: $\left(\mathbf{X}=x \oplus r_{x}, \mathbf{Y}=y \oplus r_{y}, r_{x}, r_{y}, \gamma\right) \in \mathbb{Z}_{2^{k}}^{5}$ Output: $\left(\mathbf{S}=(x+y) \oplus r_{s}, r_{s}=r_{X} \oplus r_{y}\right)$
\triangleright Initialization
\triangleright Main loop
\triangleright Aggregation

Basic addition

```
Input: \((x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}\)
Output: \(s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus\) carry
\(\triangleright\) Initialization
\(\mathrm{B} \leftarrow x \& y ;\)
\(\mathrm{A} \leftarrow x \oplus y ;\)
\(C \leftarrow 0\);
\(\triangleright\) Main loop
for \(i=1\) to \(k-1\) do
    \(C \leftarrow C \& A ;\)
    \(\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}\);
    \(\mathrm{C} \leftarrow 2 \cdot \mathrm{C}\);
end
\(\triangleright\) Aggregation
\(\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{C}\);
return \(A\)
```


Secure addition

Addition with blinded operands

Basic addition

```
Input: (X = x \oplus r r , Y = y\oplus ry, r}\mp@subsup{r}{x}{},\mp@subsup{r}{y}{},\gamma)\in\mp@subsup{\mathbb{Z}}{\mp@subsup{2}{}{k}}{5
Output: (S = (x+y)\oplus r
Initialization
B
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mathbf{T}&\mp@subsup{r}{x}{}
\mp@subsup{\textrm{B}}{0}{}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mp@subsup{r}{x}{}&\mp@subsup{r}{y}{};
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T
```

\triangleright Main loop
for
\triangleright Aggregation

Input: $(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus$ carry
\triangleright Initialization
$\mathrm{B} \leftarrow x \& y$;

Trichina trick for secure AND

- Series of 4 AND and 4 XOR

technicolor

Secure addition

Addition with blinded operands

Basic addition

```
Input: (X = x }\oplus\mp@subsup{r}{x}{},\mathbf{Y}=y\oplus\mp@subsup{r}{y}{},\mp@subsup{r}{x}{},\mp@subsup{r}{y}{},\gamma)\in\mp@subsup{\mathbb{Z}}{2}{5
Output: (S = (x+y)\oplus r
| Initialization
B
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mathbf{Y}&\mp@subsup{r}{x}{}
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mp@subsup{r}{x}{}&\mp@subsup{r}{y}{}
\mp@subsup{\textrm{B}}{0}{}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T}
A0}\leftarrow\mathbf{X}\oplus\mathbf{Y};\mp@subsup{\textrm{A}}{1}{}\leftarrow\mp@subsup{r}{x}{}\oplus\mp@subsup{r}{y}{}
C
\Main loop
end
|Aggregation
A
```

Input: $(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus$ carry
\triangleright Initialization
$\mathrm{B} \leftarrow x \& y ;$
$\mathrm{A} \leftarrow x \oplus y ;$
$C \leftarrow 0$;
\triangleright Main loop
for $i=1$ to $k-1$ do
$C \leftarrow C \& A ;$
$\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}$;
$\mathrm{C} \leftarrow 2 \cdot \mathrm{C} ;$
end
\triangleright Aggregation
$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{C}$;
return A

Secure addition

Addition with blinded operands

```
Input: (X = x \oplus r r , Y = y\oplus ry, r}\mp@subsup{r}{x}{},\mp@subsup{r}{y}{},\gamma)\in\mp@subsup{\mathbb{Z}}{\mp@subsup{2}{}{k}}{5
Output: (S = (x+y)\oplus rs, r
|nitialization
B
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mathbf{Y}&\mp@subsup{r}{x}{}
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mp@subsup{r}{x}{}&\mp@subsup{r}{y}{}
B0}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\mp@subsup{\textrm{B}}{}{\top
\mp@subsup{A}{0}{}}\leftarrow\mathbf{X}\oplus\mathbf{Y};\mp@subsup{\textrm{A}}{1}{}\leftarrow\mp@subsup{r}{x}{}\oplus\mp@subsup{r}{y}{}
C
\Omega\leftarrow\mp@subsup{C}{0}{}&&\mp@subsup{A}{0}{}\oplus\mp@subsup{B}{0}{\prime};
\Omega\leftarrowC}\mp@subsup{C}{0}{&}&\mp@subsup{A}{1}{}\oplus\Omega
Main loop
for i}=1\mathrm{ to }k-1\mathrm{ do
    C
        C
        C
end
\triangleright \mathrm { B } _ { 0 } = x \& y \oplus \gamma
```


Basic addition

Input: $(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus$ carry
\triangleright Initialization
$\mathrm{B} \leftarrow x \& y ;$
$\mathrm{A} \leftarrow x \oplus y ;$
$C \leftarrow 0$;

Goubin's trick for carry masking

- Mask the carry C with 2γ
- Pre-compute the loop transformed mask Ω

$$
\begin{aligned}
\Omega & =2 \gamma \& A \oplus B \oplus \gamma \\
& =2 \gamma \& A_{0} \oplus \mathrm{~B}_{0} \oplus 2 \gamma \& \mathrm{~A}_{1}
\end{aligned}
$$

Secure addition

Addition with blinded operands

```
Input: \(\left(\mathbf{X}=x \oplus r_{x}, \mathbf{Y}=y \oplus r_{y}, r_{x}, r_{y}, \gamma\right) \in \mathbb{Z}_{2^{k}}^{5}\)
Output: \(\left(\mathbf{S}=(x+y) \oplus r_{s}, r_{s}=r_{X} \oplus r_{y}\right)\)
\(\triangleright\) Initialization
\(\mathrm{B}_{0} \leftarrow \gamma \oplus \mathbf{X} \& \mathbf{Y} ; \mathrm{T} \leftarrow \mathbf{X} \& r_{y} ;\)
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} ; \mathrm{T} \leftarrow \mathbf{Y} \& r_{x} ;\)
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} ; \mathrm{T} \leftarrow r_{x} \& r_{y} ;\)
\(B_{0} \leftarrow B_{0} \oplus T\)
\(\triangleright \mathrm{B}_{0}=x \& y \oplus \gamma\)
\(\mathrm{A}_{0} \leftarrow \mathbf{X} \oplus \mathbf{Y} ; \mathrm{A}_{1} \leftarrow r_{x} \oplus r_{y} ;\)
\(\mathrm{C}_{0} \leftarrow 2 \cdot \gamma ; \mathrm{C}_{1} \leftarrow 2 \cdot \gamma ;\)
\(\Omega \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{0} \oplus \mathrm{~B}_{0}\);
\(\Omega \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{1} \oplus \Omega ;\)
\(\triangleright\) Main loop
for \(i=1\) to \(k-1\) do
\(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \& A ;\)
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \oplus \Omega ;\)
        \(\mathrm{C}_{0} \leftarrow 2 \cdot \mathrm{C}_{0} \quad \triangleright \mathrm{C}_{0}=C \oplus 2 \gamma\)
end
\(\triangleright\) Aggregation
\(\mathrm{A}_{0} \leftarrow \mathrm{~A}_{0} \oplus \mathrm{C}_{0} ; \mathrm{A}_{0} \leftarrow \mathrm{~A}_{0} \oplus \mathrm{C}_{1} \quad \triangleright \mathrm{~A}_{0}=\mathbf{X} \oplus \mathbf{Y} \oplus C\)
```


Basic addition

Input: $(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus$ carry
\triangleright Initialization
$\mathrm{B} \leftarrow x \& y ;$
$\mathrm{A} \leftarrow x \oplus y ;$
$C \leftarrow 0$;
\triangleright Main loop
for $i=1$ to $k-1$ do
$C \leftarrow C \& A ;$
$\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}$;
$C \leftarrow 2 \cdot C ;$
end
\triangleright Aggregation
$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{C}$;
return A

Secure addition

Addition with blinded operands

```
Input: \(\left(\mathbf{X}=x \oplus r_{x}, \mathbf{Y}=y \oplus r_{y}, r_{x}, r_{y}, \gamma\right) \in \mathbb{Z}_{2^{k}}^{5}\)
Output: \(\left(\mathbf{S}=(x+y) \oplus r_{s}, r_{s}=r_{X} \oplus r_{y}\right)\)
\(\triangleright\) Initialization
\(\mathrm{B}_{0} \leftarrow \gamma \oplus \mathbf{X} \& \mathbf{Y} ; \mathrm{T} \leftarrow \mathbf{X} \& r_{y} ;\)
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} ; \mathrm{T} \leftarrow \mathbf{Y} \& r_{x} ;\)
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} ; \mathrm{T} \leftarrow r_{x} \& r_{y} ;\)
\(B_{0} \leftarrow B_{0} \oplus T\)
\(\triangleright \mathrm{B}_{0}=x \& y \oplus \gamma\)
\(\mathrm{A}_{0} \leftarrow \mathbf{X} \oplus \mathbf{Y} ; \mathrm{A}_{1} \leftarrow r_{x} \oplus r_{y} ;\)
\(\mathrm{C}_{0} \leftarrow 2 \cdot \gamma ; \mathrm{C}_{1} \leftarrow 2 \cdot \gamma ;\)
\(\Omega \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{0} \oplus \mathrm{~B}_{0}\);
\(\Omega \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{1} \oplus \Omega ;\)
\(\triangleright\) Main loop
for \(i=1\) to \(k-1\) do
    \(T \leftarrow C_{0} \& A_{0} ;\)
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{1} ;\)
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \oplus \Omega\);
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \oplus \mathrm{~T}\);
        \(\mathrm{C}_{0} \leftarrow 2 \cdot \mathrm{C}_{0}\)
end
\(\triangleright\) Aggregation
\(\mathrm{A}_{0} \leftarrow \mathrm{~A}_{0} \oplus \mathrm{C}_{0} ; \mathrm{A}_{0} \leftarrow \mathrm{~A}_{0} \oplus \mathrm{C}_{1} \quad \triangleright \mathrm{~A}_{0}=\mathbf{X} \oplus \mathbf{Y} \oplus C\)
```


Basic addition

Input: $(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus$ carry
\triangleright Initialization
$\mathrm{B} \leftarrow x \& y ;$
$\mathrm{A} \leftarrow x \oplus y ;$
$C \leftarrow 0$;
\triangleright Main loop
for $i=1$ to $k-1$ do
$C \leftarrow C \& A ;$
$\mathrm{C} \leftarrow \mathrm{C} \oplus \mathrm{B}$;
$C \leftarrow 2 \cdot C ;$
end
\triangleright Aggregation
$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{C}$;
return A

Secure addition

Addition with blinded operands

Basic addition

Input: $(x, y) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{2^{k}}$
Output: $s=x+y\left(\bmod 2^{k}\right)=x \oplus y \oplus$ carry
\triangleright Initialization
$\mathrm{B} \leftarrow x \& y$;

A new trick

- We noted that the carry after round 1
$C=2 \cdot(x \& y \oplus \gamma)=2 \cdot \mathrm{~B}_{0}$
- We saved operations of round 1
- The trick applies also to Goubin A-to-B conversion (cost is reduced from $5 k+5$ down to $\underline{5 k+1}$ operations)

Secure addition

Addition with blinded operands

Basic addition

```
Input: \(\left(\mathbf{X}=x \oplus r_{x}, \mathbf{Y}=y \oplus r_{y}, r_{x}, r_{y}, \gamma\right) \in \mathbb{Z}_{2^{k}}^{5}\)
Output: \(\left(\mathbf{S}=(x+y) \oplus r_{s}, r_{s}=r_{x} \oplus r_{y}\right)\)
\(\triangleright\) Initialization
\(\mathrm{B}_{0} \leftarrow \gamma \oplus \mathbf{X} \& \mathbf{Y} ; \mathrm{T} \leftarrow \mathbf{X} \& r_{y}\);
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} ; \mathrm{T} \leftarrow \mathbf{Y} \& r_{x} ;\)
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} ; \mathrm{T} \leftarrow r_{x} \& r_{y} ;\)
\(\mathrm{B}_{0} \leftarrow \mathrm{~B}_{0} \oplus \mathrm{~T} \quad \triangleright \mathrm{~B}_{0}=x \& y \oplus \gamma\)
\(\mathrm{A}_{0} \leftarrow \mathbf{X} \oplus \mathbf{Y} ; \mathrm{A}_{1} \leftarrow r_{x} \oplus r_{y} ;\)
\(\mathrm{C}_{0} \leftarrow 2 \cdot \gamma ; \mathrm{C}_{1} \leftarrow 2 \cdot \gamma ;\)
\(\Omega \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{0} \oplus \mathrm{~B}_{0}\);
\(\Omega \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{1} \oplus \Omega\);
\(\mathrm{C}_{0} \leftarrow 2 \cdot \mathrm{~B}_{0}\);
\(\triangleright\) Main loop
for \(i=2\) to \(k-1\) do
    \(T \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{0}\);
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \& \mathrm{~A}_{1}\);
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \oplus \Omega\);
        \(\mathrm{C}_{0} \leftarrow \mathrm{C}_{0} \oplus \mathrm{~T}\);
        \(\mathrm{C}_{0} \leftarrow 2 \cdot \mathrm{C}_{0} \quad \triangleright \mathrm{C}_{0}=C \oplus 2 \gamma\)
end
\(\triangleright\) Aggregation
\(\mathrm{A}_{0} \leftarrow \mathrm{~A}_{0} \oplus \mathrm{C}_{0} ; \mathrm{A}_{0} \leftarrow \mathrm{~A}_{0} \oplus \mathrm{C}_{1} \quad \triangleright \mathrm{~A}_{0}=\mathbf{X} \oplus \mathbf{Y} \oplus C\)
return \(\left(A_{0}, A_{1}\right)\)
```


Secure addition

Addition with blinded operands

Basic addition

```
Input: (X = x \oplus r re, Y = y \oplus r ry, rx, ry,\gamma) \in\mathbb{Z}}\mp@subsup{2}{\mp@subsup{2}{}{k}}{5
Output: (\mathbf{S}=(x+y)\oplus\mp@subsup{r}{s}{},\mp@subsup{r}{s}{}=\mp@subsup{r}{x}{}\oplus\mp@subsup{r}{y}{})
Initialization
B
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mathbf{Y}&\mp@subsup{r}{x}{}
\mp@subsup{B}{0}{}}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T};\textrm{T}\leftarrow\mp@subsup{r}{x}{}&\mp@subsup{r}{y}{}
\mp@subsup{\textrm{B}}{0}{}\leftarrow\mp@subsup{\textrm{B}}{0}{}\oplus\textrm{T}
\mp@subsup{A}{0}{}}\leftarrow\mathbf{X}\oplus\mathbf{Y};\mp@subsup{\textrm{A}}{1}{}\leftarrow\mp@subsup{r}{x}{}\oplus\mp@subsup{r}{y}{\prime}
C
\Omega\leftarrow\mp@subsup{C}{0}{}&&\mp@subsup{A}{0}{}\oplus\mp@subsup{B}{0}{\prime};
\Omega\leftarrow C & & A 
C
Main loop
fori=2 to k-1 do
        T}\leftarrow\mp@subsup{\textrm{C}}{0}{&}&\mp@subsup{A}{0}{}
        C
        C
        C
        C
end
    \triangleright C _ { 0 } = C \oplus 2 \gamma
|ggregation
A
return (A0, A 
```


Final algorithm

- We rearranged the operations to obtain a better memory management
- We also save a few more operations
- The final cost $5 k+8$ basic ops
- Faster than Goubin's method ($5 k+21 \mathrm{ops}$)

Outline

1 Preliminary Background

- DPA attacks and countermeasures
- Masking and switching method

2 A new DPA resistant addition algorithm
■ Basic algorithm

- DPA resistant addition algorithm

3 Application to XTEA

- XTEA overview
- Preventing first-order DPA

■ Performance analysis
4 Conclusion

XTEA overview

- XTEA is a lightweight cipher designed by Needham and Wheeler

■ 32 rounds, 128 -bit key length, 64 -bit block length

XTEA overview

- XTEA is a lightweight cipher designed by Needham and Wheeler

■ 32 rounds, 128 -bit key length, 64 -bit block length

- Minimal key set-up: 32-bit part of the key used in each round
- Security: combination of additions, shifts and XORs

XTEA overview

- XTEA is a lightweight cipher designed by Needham and Wheeler

■ 32 rounds, 128 -bit key length, 64 -bit block length

- Minimal key set-up: 32-bit part of the key used in each round
- Security: combination of additions, shifts and XORs
- Simple routine: Feistel structure with 32 -bit word inputs (v_{0}, v_{1}), without S-box

Preventing first-order DPA

■ Fresh 32-bit random masks w_{0}, w_{1} and γ are used for each encryption process

technicolor

Preventing first-order DPA

■ Fresh 32-bit random masks w_{0}, w_{1} and γ are used for each encryption process
$\square \mathbf{V}_{\mathbf{0}}=v_{0} \oplus w_{0}, \mathbf{V}_{\mathbf{1}}=v_{1} \oplus w_{1}, \gamma$ is used with the secure addition algorithm

- Operations on the masked variables and the masks are processed separately

technicolor

Preventing first-order DPA

■ Fresh 32-bit random masks w_{0}, w_{1} and γ are used for each encryption process
$\square \mathbf{V}_{\mathbf{0}}=v_{0} \oplus w_{0}, \mathbf{V}_{\mathbf{1}}=v_{1} \oplus w_{1}, \gamma$ is used with the secure addition algorithm

- Operations on the masked variables and the masks are processed separately
- The same masks are maintained across all rounds
- At the end the masks (w_{0}, w_{1}) enable to get the unmasked ciphertext

technicolor

Performance Analysis

Algorithms	ROM [bytes]	RAM [bytes]	Cycles/byte
XTEA	114	16	60
masked XTEA (New alg.)	379	28	2410
" (Optimized Goubin)	$395(+4 \%)$	28	$2515(+4 \%)$
"(Nei β e and Pulkus '04)	$620(+39 \%)$	45	$3180(+24 \%)$
"(Debraize '12)	$664(+43 \%)$	51	$3403(+29 \%)$

■ Goal: implementation of protected XTEA using different algorithms with the smallest memory footprint

■ The nibble size tested is $k=4$ with LUTs methods
\square An optimized version of the Goubin method was implemented for the tests (see Appendix in the paper)

- C code, a 32-bit Intel based processor used for evaluation
- The compilation options were chosen to favor small code size

Performance Analysis

Algorithms	ROM [bytes]	RAM [bytes]	Cycles/byte
XTEA	114	16	60
masked XTEA (New alg.)	379	28	2410
" (Optimized Goubin)	$395(+4 \%)$	28	$2515(+4 \%)$
"(Nei β e and Pulkus '04)	$620(+39 \%)$	45	$3180(+24 \%)$
"(Debraize '12)	$664(+43 \%)$	51	$3403(+29 \%)$

- Goal: implementation of protected XTEA using different algorithms with the smallest memory footprint

■ The nibble size tested is $k=4$ with LUTs methods
\square An optimized version of the Goubin method was implemented for the tests (see Appendix in the paper)

- C code, a 32-bit Intel based processor used for evaluation
- The compilation options were chosen to favor small code size
- New method is compact and fast

■ Saves at least 39% of the memory space compared to methods based on LUTs
■ Up to 29% faster than LUTs methods

Outline

1 Preliminary Background
■ DPA attacks and countermeasures

- Masking and switching method

2 A new DPA resistant addition algorithm

- Basic algorithm
- DPA resistant addition algorithm

3 Application to XTEA
■ XTEA overview

- Preventing first-order DPA

■ Performance analysis

4 Conclusion

Summary

■ Compact methods for adding 2 boolean masked variables

- We devised a new addition algorithm
- Approach differs from known switching methods

■ Application of new addition algorithm

- Is efficient when one addition occur with any operation that is compatible with boolean masking (boolean op., shift or rotation).
- Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)

Summary

■ Compact methods for adding 2 boolean masked variables

- We devised a new addition algorithm
- Approach differs from known switching methods
- Application of new addition algorithm
- Is efficient when one addition occur with any operation that is compatible with boolean masking (boolean op., shift or rotation).
- Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)
- Security
- Randomized, regular, transformed masking method
- Protected against first-order DPA attacks

Summary

- Compact methods for adding 2 boolean masked variables
- We devised a new addition algorithm
- Approach differs from known switching methods
- Application of new addition algorithm
- Is efficient when one addition occur with any operation that is compatible with boolean masking (boolean op., shift or rotation).
- Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)
- Security
- Randomized, regular, transformed masking method
- Protected against first-order DPA attacks

■ Attractive for smartcards

- Minimal memory footprint
- XTEA's countermeasure and tests proved that it is well adapted to 32-bit cpus
\square With smaller word size (eg. 8-bit), the gain in speed is even more significant

