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Differential Power Analysis

Side channel attack
DPA introduced by Paul Kocher et al. 1998
Recovers secret keys used for en/decryption

Some a priori knowledge of the algorithm is required

Power consumption depends on data being processed
Power measurements give hints about processed internal data

When key cannot be found directly in a single power trace
Gather many power consumption curves
Assume a part of the key value, divide data into two groups(0 and
1 for chosen bit), calculate mean value curve of each group
Correlation between predicted power consumption and actual
power consumption
If the subkey guess is correct, then the prediction (likely) matches
the physical measurement
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DPA results example

DPA and power curves superposition
Correct subkey predicted⇒ spikes in the differential curves
Repeat the process for other parts of the key
Exhaustive search for remaining bits of the key
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A DPA countermeasure

An approach is to randomize the intermediate results
the power consumption of the device processing randomized data
is not correlated to the intermediate results

Masking: can be applied in software or hardware
Split intermediate variables into at least two shares during
execution (Chari et al. 1999)
Power leakage of one share does not leak sensitive information
Two shares (a random mask and masked variable) are sufficient
to protect against first-order DPA

Two common masking techniques
Boolean masking: x → (X = x ⊕ rx , rx )
Arithmetic masking: x → (X = x − rx , rx )

⇒ For algorithms that combine both types of operations, a secure
conversion from one masking to another must be used
(Messerges 2000)
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Mask-switching methods

Example
I Securely compute (A + B)⊕ C with boolean masked variables

I 2 B-to-A and 1 A-to-B
conversions needed

I B-to-A is efficient and
costs 7 ops (Goubin
2001)

I A-to-B is less efficient
and costs 5k + 5 ops
(Goubin)

A⊕ rA B ⊕ rB

A− rA B − rB

A+B − (rA + rB)

rA rB

rA + rB

Conv + → ⊕

A+B ⊕ (rA + rB) C ⊕ rC

(A+ B)⊕ C ⊕ [(rA + rB)⊕ rC ]

(rA + rB)⊕ rC

rC

Conv ⊕ → +Conv ⊕ → +
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Mask-switching with LUTs

In 2003, Coron and Tchulkine propose to use pre-computed
tables to perform A-to-B conversion

A table G is used to convert nibbles (i.e. 4 or 8-bit part of the
variables) from arithmetic to Boolean masking
The input of the table G is masked (additively) and viewed during
conversion step as a memory offset information
The table offset contains the corresponding (Boolean) masked
variable

The method was later improved by Neiβe and Pulkus in 2004
Reduces the RAM consumption

An extension to the above techniques was more recently
proposed by Debraize in 2012

Offers better security
Interesting for 8-bit CPUs
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This Talk

Mask-switching method

x ⊕ rx

Secure B-to-A

��

y ⊕ ry

��

s = (x + y)⊕ (rx + ry )

x − rx y − ry
+

(classical)
// (x + y)− (rx + ry )

Secure A-to-B (with LUTs)

KS

If we have only one addition (followed by boolean operations)
can we avoid mask-switching ?

New method
The new proposed algorithm is based on a more direct
approacxh

x ⊕ rx y ⊕ ry
Secure adder+3 s = (x + y)⊕ (rx ⊕ ry )
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Our construction

The goal is to securely compute S = (x + y)⊕ rs from (X, rx ) and
(Y, ry ) and without compromising the x or y through DPA

Idea: x + y = x ⊕ y ⊕ carry(x , y)

Construct an addition algorithm that takes blinded operands as
input

S = (x + y)⊕ rs = (x ⊕ y ⊕ c)⊕ rs

= (X⊕ rx )⊕ (Y⊕ ry )⊕ c ⊕ rs

= X⊕ Y⊕ c by setting rs = rx ⊕ ry

Find an algorithm that computes the carry of two variables
Ensure that all intermediate variables do not leak information
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Addition algorithm

AND-XOR-and-double method

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k )

1 A← x ⊕ y ; B← x & y ; C← 0
2 For i = 1 to k − 1 do

C← C & A
C← C⊕ B
C← 2·C

3 A← A⊕ C
4 Return A

Right-to-left carry evaluation
The carry is iteratively computed using A, B
Basis of our construction
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Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry )

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for to k − 1 do
C0 ← C0 ⊕ Ω;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k ) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A
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Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k ) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;

Trichina trick for secure AND

I Series of 4 AND and 4 XOR

b

γ x y x ry rx y rx ry

B0
γ
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. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

Goubin’s trick for carry masking

I Mask the carry C with 2γ

I Pre-compute the loop
transformed mask Ω

Ω = 2γ & A⊕ B⊕ γ
= 2γ & A0 ⊕ B0 ⊕ 2γ & A1
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Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k ) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;

A new trick
I We noted that the carry after

round 1
C = 2 · (x & y ⊕ γ) = 2 · B0

I We saved operations of round 1

I The trick applies also to Goubin
A-to-B conversion (cost is
reduced from 5k + 5 down to
5k + 1 operations)
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2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry )

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 2 to k − 1 do
T← C0 & A0;
C0 ← C0 & A1;
C0 ← C0 ⊕ Ω;
C0 ← C0 ⊕ T;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k ) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A
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A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k ) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;

Final algorithm

I We rearranged the operations to
obtain a better memory
management

I We also save a few more
operations

I The final cost 5k + 8 basic ops

I Faster than Goubin’s method
(5k + 21 ops)
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XTEA overview

XTEA is a lightweight cipher designed by Needham and Wheeler
32 rounds, 128-bit key length, 64-bit block length
Minimal key set-up: 32-bit part of the key used in each round
Security: combination of additions, shifts and XORs
Simple routine: Feistel structure with 32-bit word inputs (v0, v1),
without S-box

K[ai] + δi−1

v
(i−1)
0 v

(i−1)
1

v
(i+1)
0 v

(i+1)
1

v
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1v
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Preventing first-order DPA

Fresh 32-bit random masks w0 , w1 and γ are used for each
encryption process

V0 = v0 ⊕ w0 ,V1 = v1 ⊕ w1, γ is used with the secure addition
algorithm
Operations on the masked variables and the masks are
processed separately
The same masks are maintained across all rounds
At the end the masks (w0 ,w1) enable to get the unmasked
ciphertext

K + δ

v0 v1

≪ 4

≫ 5

K + δ

w0

≪ 4

≫ 5

v0

K + δ

w1 v1

≪ 4

≫ 5

γ γ
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Performance Analysis

Algorithms ROM [bytes] RAM [bytes] Cycles/byte
XTEA 114 16 60

masked XTEA (New alg.) 379 28 2410
” (Optimized Goubin) 395 (+4%) 28 2515 (+4%)

” (Neiβe and Pulkus ’04) 620 (+39%) 45 3180 (+24%)
” (Debraize ’12) 664 (+43%) 51 3403 (+29%)

Goal: implementation of protected XTEA using different
algorithms with the smallest memory footprint

The nibble size tested is k = 4 with LUTs methods
An optimized version of the Goubin method was implemented for
the tests (see Appendix in the paper)
C code, a 32-bit Intel based processor used for evaluation
The compilation options were chosen to favor small code size

New method is compact and fast
Saves at least 39% of the memory space compared to methods
based on LUTs
Up to 29% faster than LUTs methods
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Summary
Compact methods for adding 2 boolean masked variables

We devised a new addition algorithm
Approach differs from known switching methods

Application of new addition algorithm
Is efficient when one addition occur with any operation that is
compatible with boolean masking (boolean op., shift or rotation).
Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)

Security
Randomized, regular, transformed masking method
Protected against first-order DPA attacks

Attractive for smartcards
Minimal memory footprint
XTEA’s countermeasure and tests proved that it is well adapted to
32-bit cpus
With smaller word size (eg. 8-bit), the gain in speed is even more
significant
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