KU LEUVEN

A note on the comparison of distinguishers

Oscar Reparaz, Benedikt Gierlichs, Ingrid Verbauwhede

COSIC/KU Leuven

COSADE 2014, Paris

One for All - All for One: Unifying Standard DPA Attacks

Stefan Mangard¹, Elisabeth Oswald², François-Xavier Standaert^{3*}

• Success rates

A fair evaluation framework for comparing side-channel distinguishers

Carolyn Whitnall · Elisabeth Oswald

• Introduces (theoretical) distinguishing margins

Definitions: distinguishing vector

Definitions: distinguishing vector

Definitions: distinguishing vector

Definitions: success rate, relative margins

Definitions: success rate, relative margins

- Success rates
 - Repeat the experiment, count how many successful

Definitions: success rate, relative margins

- Success rates
 - Repeat the experiment, count how many successful
- Distinguishing margins
 - Normalized "distance" between correct key hypo and nearest rival

$$\operatorname{RelMargin}(D) = \frac{D(k^*) - \max\left[D(k)|k \neq k^*\right]}{\operatorname{std}(D)}$$

Comparision success rates vs. distinguishing margins

Comparision success rates vs. distinguishing margins Success rates

Comparision success rates vs. distinguishing margins Success rates

- + Can be empirically computed quite easily
- + Easy interpretation

Comparision success rates vs. distinguishing margins Success rates

- + Can be empirically computed quite easily
- + Easy interpretation
- Not so easy to compute for certain distinguishers

Comparision success rates vs. distinguishing margins Success rates Distinguishing margins

- + Can be empirically computed quite easily
- + Easy interpretation
- Not so easy to compute for certain distinguishers

Comparision success rates vs. distinguishing margins Success rates Distinguishing margins

- + Can be empirically computed quite easily
- + Easy interpretation
- Not so easy to compute for certain distinguishers
- + Can be (easily) computed in a theoretic way for many distinguishers (thereby circumventing estimation issues)

Comparision success rates vs. distinguishing margins Success rates Distinguishing margins

- + Can be empirically computed quite easily
- + Easy interpretation
- Not so easy to compute for certain distinguishers
- + Can be (easily) computed in a theoretic way for many distinguishers (thereby circumventing estimation issues)
- should not be taken as the sole metric

Distinguisher 1

• Absolute value of DoM

Distinguisher 1

• Absolute value of DoM

$$D_1(k) = \left| \widehat{\mathbf{E}}(T|L(Z_k) = 1) - \widehat{\mathbf{E}}(T|L(Z_k) = 0) \right|$$

Absolute value of DoM

Distinguisher 1 Distinguisher 2

 Absolute value of DoM, squared

$$D_1(k) = \left| \widehat{\mathbf{E}}(T|L(Z_k) = 1) - \widehat{\mathbf{E}}(T|L(Z_k) = 0) \right|$$

Absolute value of DoM

Distinguisher 1 Distinguisher 2

 Absolute value of DoM, squared

$$D_1(k) = \left| \widehat{\mathbf{E}}(T|L(Z_k) = 1) - \widehat{\mathbf{E}}(T|L(Z_k) = 0) \right| \qquad D_2(k) = [D_1(k)]^2 \\ = \left| \widehat{\mathbf{E}}(T|L(Z_k) = 1) - \widehat{\mathbf{E}}(T|L(Z_k) = 0) \right|^2$$

13

$RelMargin(D1) = 0.25 \neq RelMargin(D2) = 0.51$

A different D1 box

A different D1 box

A different D1 box

Different transformation functions

Different transformation functions

Different transformation functions

Conclusion

- No one-fits-all solution
- Nice theoretical properties, but sometimes too theoretical