A note on the comparison of distinguishers

Oscar Reparaz, Benedikt Gierlichs,

KULEUVEN

 Ingrid VerbauwhedeCOSIC/KU Leuven

COSADE 2014, Paris

A jungle of distinguishers

A jungle of distinguishers

A jungle of distinguishers

A jungle of distinguishers

A jungle of distinguishers

A jungle of distinguishers

One for All - All for One: Unifying Standard DPA Attacks

Stefan Mangard ${ }^{1}$, Elisabeth Oswald ${ }^{2}$, François-Xavier Standaert ${ }^{3 \star}$

- Success rates

A fair evaluation framework for comparing side-channel distinguishers

Carolyn Whitnall • Elisabeth Oswald

- Introduces (theoretical) distinguishing margins

Definitions: distinguishing vector

Definitions: distinguishing vector

Definitions: distinguishing vector

Definitions: success rate, relative margins

Definitions: success rate, relative margins

- Success rates
- Repeat the experiment, count how many successful

Definitions: success rate, relative margins

- Success rates
- Repeat the experiment, count how many successful
- Distinguishing margins
- Normalized "distance" between correct key hypo and nearest rival

$$
\operatorname{RelMargin}(D)=\frac{D\left(k^{*}\right)-\max \left[D(k) \mid k \neq k^{*}\right]}{\operatorname{std}(D)}
$$

Comparision success rates vs. distinguishing margins

Comparision success rates vs.
distinguishing margins
Success rates

Comparision success rates vs. distinguishing margins

Success rates

- + Can be empirically computed quite easily
- + Easy interpretation

Comparision success rates vs. distinguishing margins

Success rates

- + Can be empirically computed quite easily
- + Easy interpretation
- - Not so easy to compute for certain distinguishers

Comparision success rates vs.

distinguishing margins
 Distinguishing margins

Success rates

- + Can be empirically computed quite easily
- + Easy interpretation
- - Not so easy to compute for certain distinguishers

Comparision success rates vs.

distinguishing margins

Success rates

- + Can be empirically computed quite easily
- + Easy interpretation
- - Not so easy to compute for certain distinguishers

Distinguishing margins

- + Can be (easily) computed in a theoretic way for many distinguishers (thereby circumventing estimation issues)

Comparision success rates vs.

distinguishing margins

Success rates

- + Can be empirically computed quite easily
- + Easy interpretation
- - Not so easy to compute for certain distinguishers

Distinguishing margins

- + Can be (easily) computed in a theoretic way for many distinguishers (thereby circumventing estimation issues)
- - should not be taken as the sole metric

Distinguisher 1

- Absolute value of DoM

Distinguisher 1

- Absolute value of DoM

$$
D_{1}(k)=\left|\widehat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=1\right)-\widehat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=0\right)\right|
$$

Distinguisher 1 Distinguisher 2

- Absolute value of DoM
- Absolute value of DoM, squared

$$
D_{1}(k)=\left|\widehat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=1\right)-\widehat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=0\right)\right|
$$

Distinguisher 1 Distinguisher 2

- Absolute value of DoM
- Absolute value of DoM, squared

$$
D_{1}(k)=\left|\hat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=1\right)-\hat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=0\right)\right|
$$

$$
\begin{aligned}
D_{2}(k) & =\left[D_{1}(k)\right]^{2} \\
& =\left|\widehat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=1\right)-\widehat{\mathbf{E}}\left(T \mid L\left(Z_{k}\right)=0\right)\right|^{2}
\end{aligned}
$$

Distinguishing vectors for distinguisher 1 and 2

Distinguishing vectors for distinguisher 1 and 2

Distinguishing vectors for distinguisher 1 and 2

Distinguishing vectors for distinguisher 1 and 2

Order preserved \rightarrow same success rate

Distinguishing vectors for distinguisher 1 and 2

RelMargin(D1) $=0.25 \neq$ RelMargin(D2) $=0.51$

A different D1 box

A different D1 box

A different D1 box

A different D1 box

Different transformation functions

Different transformation functions

Different transformation functions

Conclusion

- No one-fits-all solution
- Nice theoretical properties, but sometimes too theoretical

