Improved Side Channel Attacks on Pairing Based Cryptography

Peter Günther

joint work with

Johannes Blömer and Gennadij Liske

University of Paderborn

8. März 2013

Pairings as a building block...

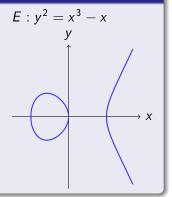
... for various interesting primitives

- Short signatures
- Identity based cryptography
- Attribute based encryption
- Anonymous group signatures
- Broadcast encryption
- Leak-resilient cryptography
- Noninteractive zero knowledge proofs
- •

Background

Foundations

- Finite field \mathbb{F}_q
- ullet Degree k extension field \mathbb{F}_{q^k} of \mathbb{F}_q
- Elliptic curve $E: y^2 = x^3 + ax + b$ as group with points defined over \mathbb{F}_{a^k}
- Large subgroups $\mathbb{G}_1, \mathbb{G}_2 \subseteq E(\mathbb{F}_{q^k}), \mathbb{G}_{\mathcal{T}} \subseteq \mathbb{F}_{q^k}^*$ of order n
- ullet Often $\mathbb{G}_1 \subseteq E(\mathbb{F}_{q^l})$ with l < k possible



Background

The basic building block

Bilinear mapping:

$$e: \mathbb{G}_1 imes \mathbb{G}_2 o \mathbb{G}_{\mathcal{T}}$$

Interesting properties for application in cryptography

Bilinearity:

$$e(P_1 + Q_1, P_2) = e(P_1, P_2) \cdot e(Q_1, P_2)$$

 $e(P_1, P_2 + Q_2) = e(P_1, P_2) \cdot e(P_1, Q_2)$

Various hardness assumptions

- Fixed Argument Pairing Inversion
- Bilinear Diffie Hellman
- k-linear Decisional Diffie Hellman

Many variants

- Weil pairing
- Tate pairing
- Ate pairing
- Eta pairing

Computing the Pairing

Basic ingredient of e(P, Q)

- Rational function $f_{n,P}$ with zero of order n at point P and pole of order n at point \mathcal{O} (neutral element/point at infinity)
- Evaluate $f_{n,P}$ at point Q.

Idea of Miller

- $f_{n,P}$ has degree n but . . .
- ... there is an algorithm that evaluates $f_{n,P}$ at Q in time poly-logarithmic in n
- Based on elliptic curve double and add algorithm for computing nP
- Requires additional multiplicative correction terms

Observation

Pairings are not symmetric in their arguments.

Attacks on PBC: extending the toolbox

Our results

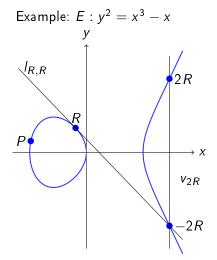
- Tate pairing: extending passive attacks of Whelan/Scott (2006) and Mrabet (2009) w.r.t.
 - ullet Secret argument P when $\mathbb{G}_1=E(\mathbb{F}_q)$
 - Projective coordinates
 - Twists of degree 4 and 6
 - Diskussion of secret sharing as countermeasure
- ② Eta pairing: generalizing fault attacks of Whelan/Scott (2007) to
 - A wider range of faults
 - Secret argument P

Input
$$P \in E$$
, $n = (n_{t-1} \dots n_0)$
Output nP

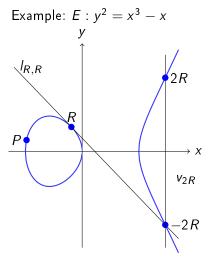
1: $R \leftarrow \mathcal{O}$
2: for $j \leftarrow t - 1, \dots, 0$ do

4: $R \leftarrow 2R$
5: if $n_j = 1$ then

7: $R \leftarrow R + P$
8: end if
9: end for
10: return R



```
Input P, Q \in E, n = (n_{t-1} \dots n_0)
Output f_{n,P}(Q)
 1: f \leftarrow 1, R \leftarrow \mathcal{O}
 2: for i \leftarrow t - 1, \dots, 0 do
 3: f \leftarrow f^2 \cdot I_{R,R}(Q)/v_{2R}(Q)
 4: R \leftarrow 2R
 5: if n_i = 1 then
              f \leftarrow f \cdot I_{R,P}(Q)/v_{R+P}(Q)
 6:
         R \leftarrow R + P
 7:
 8:
         end if
 9: end for
10: return f
```



```
Input P, Q \in E, n = (n_{t-1} \dots n_0)
Output f_{n,P}(Q)
 1: f \leftarrow 1, R \leftarrow \mathcal{O}
 2: for j \leftarrow t - 1, \dots, 0 do
 3: f \leftarrow f^2 \cdot I_{R,R}(Q)/v_{2R}(Q)
 4: R \leftarrow 2R
 5: if n_i = 1 then
 6:
               f \leftarrow f \cdot l_{R,P}(Q)/v_{R+P}(Q)
              R \leftarrow R + P
 7:
         end if
 8:
 9: end for
10: return f
```

- Secret is argument of function rather than exponent
 - High level program flow not dependent on secret
 - Results from ECC not applicable
- Many protocols allow secret to be either P or Q
- Pairing is not symmetric ⇒ dedicated analysis for both cases
- Approach: dig into the arithmetic & exploit optimization

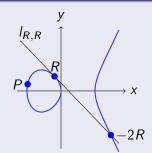
```
Input P, Q \in E, n = (n_{t-1} \dots n_0)
Output f_{n,P}(Q)
 1: f \leftarrow 1, R \leftarrow \mathcal{O}
 2: for j \leftarrow t - 1, \dots, 0 do
 3: f \leftarrow f^2 \cdot I_{R,R}(Q)/v_{2R}(Q)
 4: R \leftarrow 2R
 5: if n_i = 1 then
              f \leftarrow f \cdot I_{R,P}(Q)/v_{R+P}(Q)
 6:
           R \leftarrow R + P
 7:
         end if
 8:
 9: end for
10: return f
```

- Secret is argument of function rather than exponent
 - High level program flow not dependent on secret
 - Results from ECC not applicable
- Many protocols allow secret to be either P or Q
- Pairing is not symmetric ⇒ dedicated analysis for both cases
- Approach: dig into the arithmetic & exploit optimization

An example of our work: attacking the Tate pairing

Based on tangent through $R = (x_R, y_R)$ with slope $\lambda_{R,R}$

$$I_{R,R}(Q) = y_R - y_Q + \lambda_{R,R} \cdot (x_Q - x_R)$$



Exploits a common optimization used almost everywhere

- ullet Restrict \mathbb{G}_1 to $E(\mathbb{F}_q)$ (compared to $E(\mathbb{F}_{q^k})$)
- ullet Saves a lot of expensive arithmetic in \mathbb{F}_{a^k}
- ullet Possible, but this implies $\mathbb{G}_2
 ot \subseteq E(\mathbb{F}_{a^d})$ for d < k

Analyzing the line function

Tool: correlation based power analysis of multiplication (e.g. CPA)

- Requirement: one operand is known by the attacker
- Result: recovery of the unknown operand

Application to line function

ullet Q secret $\Rightarrow \lambda_{R,R}$ known \Rightarrow CPA \Rightarrow recovery of x_Q (Whelan/Scott 06)

$$I_{R,R}(\mathbf{Q}) = y_R - y_{\mathbf{Q}} + \lambda_{R,R} \cdot (x_{\mathbf{Q}} - x_R)$$

• P secret \Rightarrow both operands unknown \Rightarrow Problem!?

$$I_{R,R}(Q) = y_R - y_Q + \frac{\lambda_{R,R} \cdot (x_Q - x_R)}{\lambda_{R,R} \cdot (x_Q - x_R)}$$

• Dig even deeper into the arithmetic

The Setting of our Attack

$$I_{R,R}(Q) = y_R - y_Q + \frac{\lambda_{R,R} \cdot (x_Q - x_R)}{2}$$

Representation of \mathbb{G}_1 and \mathbb{G}_2

- $P, R \in E(\mathbb{F}_q) \Rightarrow x_P, y_P, x_R, y_R, \lambda_{R,R} \in \mathbb{F}_q$
- $Q \in \mathbb{F}_{q^k} \Rightarrow x_Q, y_Q \in \mathbb{F}_{q^k} = \mathbb{F}_q(\alpha)$:

$$x_Q = \sum_{i=0}^{k-1} x_Q^{(i)} \alpha^i$$
 with $x_Q^{(i)} \in \mathbb{F}_q$

Close-up of the representation

$$I_{R,R}(Q) = y_R - y_Q + \frac{\lambda_{R,R} \cdot (x_Q - x_R)}{\lambda_{R,R} \cdot (x_Q - x_R)}$$

A closer look at the extension field arithmetic . . .

...shows how this is actually computed

$$\lambda_{R,R} \cdot (x_Q - x_R) = \lambda_{R,R} \cdot \left(\left(\sum_{i=0}^{k-1} x_Q^{(i)} \alpha^i \right) - x_R \right)$$
$$= \left(\lambda_{R,R} \cdot \left(x_Q^{(0)} - x_R \right) \right) \alpha^0 + \sum_{i=1}^{k-1} \left(\underbrace{\lambda_{R,R} \cdot x_Q^{(i)}}_{Q} \right) \alpha^i$$

• $x_Q^{(i)}$ known \Rightarrow CPA \Rightarrow Recovery of $\lambda_{R,R} \Rightarrow R \Rightarrow P$

- 4 ロト 4 個 ト 4 差 ト 4 差 ト . 差 . からの

Peter Günther (UPB) SCA on PBC 8. März 2013 11 / 12

Ongoing work and open problems

- Practical implementations of the attacks
- Practical evaluation of countermeasures
- Main open question: how vulnerable is pairing based cryptography to side channel attacks?