

Exploring the Relations Between Fault Sensitivity and Power Consumption

Yang Li¹, Sho Endo², Nicolas Debande^{3,4}, Naofumi Homma², Takafumi Aoki²,

Thanh-Ha Le⁴, Jean-Luc Danger³, Kazuo Ohta¹, and Kazuo Sakiyama¹

1 The University of Electro-Communications, Japan 2 Tohoku University, Japan

3 TELECOM ParisTech, France 4 Morpho, France

liyang@uec.ac.jp

Research Background

- Power consumption
 - Representative side-channel leakage
 - Passive attack
 - Proportional to signal transitions
- Fault Sensitivity
 - Fault injection intensity for the threshold of incorrect output
 - Active attack, but similar to passive attacks
 - Another form of critical path delay (CPD)
 - A. Moradi et al. showed 1st order FS leakage for all AES cores on SASEBO-R in CHES 2011
- Relations between Power and FS?

Questions to be answered

- Does Fault Sensitivity Analysis (FSA) vulnerability imply power analysis (PA) vulnerability?
- Are FS and Power sharing similar leakage function?
- Can one countermeasure be effective against both two sidechannel leakage?

This paper

- Qualitative analysis for their relations
- Based on two well-studied unprotected AES FPGA implementations.
 - 128-bit data path, 16 S-boxes in parallel
 - AES-comp
 - Composite field arithmetic
 - Power: HD model, Zero-value model
 - FS: Zero-value model
 - AES-PPRM1
 - One-stage Positive Polarity Reed-Muller(PPRM) architecture
 - Power: HW model, HD model
 - FS: HW model

Date Measurements

- From same calculation from same device
- Byte-wise FS measurement, FS_bⁱ
- Power consumption measurement, W_i
- i: data number (1~13680), b: byte (1~16), j: sample point (0~40k)

Data Analysis (3 steps)

- 1. Confirmation of direct correlation
- 2. Comparison between leakage profiles
- 3. Key recovery using FS profile as a power model

Direct FS-Power correlation (AES-comp)

Direct FS-Power correlation (AES-pprm1)

FS-Power correlation $CorrCoef(\sum \mathrm{FS}_b^i, W_j^i)$

HD-Power Correlation

 $CorrCoef(\mathrm{HD}(I_{10},C)),W_{j}^{i})$

2. Comparison between leakage profiles

- Byte-wise profiles over three dimensions
 - S-box input in previous cycle: I_p
 - S-box input in current cycle: I_c
 - Exclusive-or between I_p and I_c

- Known-key profiling: classify data and calculate mean
 - For the FS measurement
 - Unify the offsets of parallel S-boxes
 - Classify data and calculate mean
 - For the Power measurement
 - Summation of power consumption from each S-box = measurement
 - Choose the best sample point
 - Least square solution for a set of linear equations

2. Profile results for AES-comp: Ip dimension

2. Profile results for AES-comp: I_c dimension

255

127

S-box input in current cycle: I

191

2. Profile results for AES-comp: I_p⊕ I_c dimension

FS Leakage

Correlation between two profiles: 0.6456

2. Profile results for AES-pprm1: I_D dimension

Correlation between two profiles: **0.7107**

2. Profile results for AES-pprm1: I_c dimension

FS Leakage

Correlation between two profiles: 0.7954

2. Profile results for AES-pprm1: I_p⊕ I_c dimension

FS Leakage

Correlation between two profiles: 0.7346

2. The dimension with the most leakage

Table 1. Standard deviation of FS and Power profiles for AES-comp

	I_p	I_c	$I_c \oplus I_p$
FS	0.0401	0.1919	[0.3278]
Power	0.1228	0.1248	0.1446

Table 2. Standard deviation of FS and Power profiles for AES-PPRM1

	I_p	I_c	$I_c \oplus I_p$
FS	0.1022	0.4879	0.2440
Power	0.2709	0.1927	0.1561

- Low FS-Power correlation for AES-comp I_p dimension may be caused by little FS leakage in I_p dimension
- The FS leakage is more biased among dimensions than the power leakage

2. Leakage about zero-value model (AES-comp)

 For AES-comp S-box, zero S-box input leads to less power consumption and short CPD

AES-comp I_c dimension profile results

Stardard deviation of non-zero profile
Stardard deviation of full profile

0.83 (FS) < 0.97 (Power)

2. Leakage about clockwise collision (AES-comp)

 When S-box has the same input for two consecutive clock cycles, less power consumption and short CPD

AES-comp $I_p \oplus I_c$ dimension profile results

Standard deviation of non-zero profile
Standard deviation of full profile

0.25 (FS) < 0.86 (Power)

2. Leakage about clockwise collision (AES-pprm1)

 When S-box has the same input for two consecutive clock cycles, less power consumption and short CPD

AES-pprm1 $I_p \oplus I_c$ dimension profile results

Standard deviation of non-zero profile
Standard deviation of full profile

0.65 (FS) < 0.96 (Power)

2. Correlation Check for Profile Models

AES-pprm1 I_p dimension profile results

2. Conclusions from comparison between leakage profiles

- FS-Power correlation generally exist for all dimensions
- FS and Power have different leakage bias among different dimensions

- Notable leakages (e.g. zero-value, clockwise collision) are more pronounced in FS channel
- FS and power can share a similar leakage model while the key recovery efficiencies could be totally different

3. Key recovery using FS profile as a power model (AES-comp)

Comparable attack efficiency FS-based model shows the best efficiency.

3. Key recovery using FS profile as a power model (AES-pprm1)

Comparable attack efficiency FS-based model shows the worst efficiency.

Discussion

- Reason of FS-Power correlation
 - FS \rightarrow CPD
 - Power → # of signal transitions
- Longer CPD implies more # of signal transitions

Discussion: security evaluation

- FS vulnerability generally exists in power consumption
 - Similar leakage function
 - Hard to prove/believe that the FSA leakage is totally irrelevant with the shared leakage
- FSA vulnerability is easier to be discovered, FSA can be used as an evaluation tool for power analysis
 - FS can be accurate to byte-wise or bit-wise level
 - Notable leakages (e.g. zero-value, clockwise collision) are more pronounced in FS channel

Discussion: countermeasure

- Only randomize or hide power consumption is not enough
 - For example, WDDL
- Delay timing of signals should be balanced for all input patterns

- Recommendation: gate-level PA countermeasure + higher level FSA countermeasure
 - Difficult to achieve security for two side-channels using gate-level countermeasure
 - Unique leakages from each side-channel
 - FS leakage is more easier to exploit

Conclusion

 FS and power consumption leak the similar information of the intermediate values, but distributed differently

 For a certain dimension, they can share the same leakage function but with the different attack efficiency

 FSA has a potential to become a good evaluation tool to reveal the first-order side-channel leakage

 Reasonable to achieve the resistance against FSA and power analysis from different design levels

Thanks for your attentions!

