Software Countermeasures Against DPA Attacks:
Masking vs. Dual-Rail with Precharge Logic

(for automatic and formally proven insertion)

Pablo Rauzy
rauzy@enst.fr

with Sylvain Guilley and Jean-Luc Danger

Telecom ParisTech
LTCI / COMELEC / SEN

March 8, 2013

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 1/16



Automatic insertion of countermeasures

» Cryptosystems’ software should be bug-free and rely as little as
possible on hand-written code for critical parts.

= We need formally verified tools such as a certified compiler which
would automatically add the necessary protections against SCA.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 2



Countermeasures

Countermeasures can be classified in two categories [MOPO06]:

> those that use randomness to make the leakage statistically
independent from sensitive data (like masking [CG00]);

> those that make the leakage indistinguishable (like dual-rail with
precharge logic [HDD11] (DPL)).

Automated masking has already been explored [MOPT12] but most efforts
have yet to be done for DPL.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 3/16



Countermeasures
Masking

» Needs randomness (hard to formalize).

» Assumes shares are not interfering neither logically (opcode’s effect
depending on previous ones) nor physically (glitches, cross-coupling).

» Assumes the data and operations in the algorithm are embedded
within a group (for instance (Fj, &) for Boolean additive masking).

» Protection depends on the linearity of the operation.
» Masking S-Boxes is difficult in general [PRO7].

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 4/16



Countermeasures

Dual-Rail with Precharge Logic (DPL)

» Assumes that (at least) two equivalent (in term of leakage) resources
exists.

» Protection depends less on the algorithm.

» Algorithms can be bitsliced [Bih97], which leads to a simple Turing
Machine like model that operates at the bit level.

Since it seems easier, we chose to start working on automatic insertion of
countermeasure with DPL.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 5/16



Formally proven countermeasures

We want to be able to formally prove two properties on automatically
applied countermeasures.

» The semantic of the code must not be unaltered by the
transformation that adds countermeasure (correctness).
= Exactly what a formally proven compiler does.
» The countermeasure must be efficient (security).

= We need formal model of the possible leakages, and then use them to
prove that the obtained code is protected against those leakages.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 6 /16



Formally proven countermeasures
Bonus

The necessity of both these properties is obvious. Moreover such proofs
will enable optimizations. Indeed, an optimization of a protected piece
of code should not damage the protection. Formally proven code
transformations and security can guarantee the validity of an optimization.

The formal model in which we will also has to be explicit about its
hypotheses, in particular those we have to make about the hardware. This
has the effect of yielding an exhaustive list of assumptions of the
hardware that will have to be tested in lab.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 7/ 16



Master plan

source

bitslice

compiler | DPL bitwise

macros

l

abstract
CPU CPU

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 8 /16



The abstract CPU

registers
code @@r 115 o
(read only) |_’ memory
finite »
state -
L PC machine | ©

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 9 /16



What we currently have

We start with the formal study of a DPL implementation of PRESENT.
As leakage model, we chose the hamming distance of updates of the

memory write, read, and address buses, and of the the registers write,
read, and address buses.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 10 / 16



What we currently have
Abstract CPU

» Able to keep track of information necessary to compute leakages
during evaluation.

= Enable to experimental tests on multiple exemple.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 11




What we currently have
Symbolic abstract CPU

» The "symbolic abstract CPU" is the same as the “abstract CPU" but
does symbolic evaluation.

» No assumptions are made on the initial values of the bits of the key
and the plaintext (values in registers, memory and buses are sets of
possible values).

= We can compute all the possible leakages and verify if there actually
is only one.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 12 / 16



What we currently have
Symbolic abstract CPU

» The “symbolic abstract CPU" is the same as the “abstract CPU" but
does symbolic evaluation.

» No assumptions are made on the initial values of the bits of the key
and the plaintext (values in registers, memory and buses are sets of
possible values).

= We can compute all the possible leakages and verify if there actually
is only one.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013



What we currently have / Symbolic abstract CPU
Example: PRESENT sbox
Yoy1y2ys = sbox(xox1x2x3)

;3; bitwise PRESENT sbox in 14 operations [CHM11]
xor r0 ©2 @1 ; t0O =x2 ~ x1
and rl @1 r0 ; t1 = x1 & tO
xor r2 @ rl1 ; t2 =x0 " t1
xor @7 @3 r2 ; y3 =x3 " t2
and rl r0 r2 ; tl1 =1t0 & t2
xor rO r0O @7 ; t0O =1t0 " y3
xor rl rl1 @1 ; t1 =1+t1 " x1
orr r3 @3 rl ; t3 =x3 | t1
xor @ r0O r3 ; y2 =1t0 " t3
xor r3 @3 #1 ; t3 = "x3

xor rl rl r3 ; tl =t1 "~ t3
xor @4 @ r1 ; yO =y2 " t1
orr rl r1 r0 ; t1 =+t1 | t0
xor @ r2 r1 ; yl=1t2 " t1

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 13/




What we currently have / Symbolic abstract CPU
Example: PRESENT sbox leakages trace

instructions ri ro r@ mi mo m@
xor rO @2 @1 | 0,1 0 0,1 1
and r1 @1 r0 | 0,1 0,1 0,1 0,1 0
xor r2 @ r1 | 0,1 0,1 0,1 0,1 1
xor @7 @3 r2 0 0 0,1 23
and r1 r0 r2 | 0,1 0,1 0,1

xor rO r0 @7 | 0,1 0,1 0,1 0,1 0,1
xor rl1 r1 @1 | 0,1 1 1 0,1 2
orr r3 @3 r1 | 0,1 0,1 1,2 0,1 1
xor @6 r0 r3 0,12 02 0,1 0
xor r3 @3 #1 | 0,1 0,2 2 0,1 0
xor r1 r1 r3 | 0,1 0,1 1,2

xor @4 @6 ri 0,1 1 0,1 01 0,1
orr r1 r1 r0 | 0,1 0,1 0,1

xor @5 r2 ri 0,1 0,1 0,1 0,1

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013 14 / 16



Bibliography

Eli Biham.

A Fast New DES Implementation in Software.

Jean-Sébastien Coron and Louis Goubin.
On Boolean and Arithmetic Masking against Differential Power Analysis.

Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis.

Solving Circuit Optimisation Problems in Cryptography and Cryptanalysis.

Philippe Hoogvorst, Guillaume Duc, and Jean-Luc Danger.
Software Implementation of Dual-Rail Representation.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp
Power Analysis Attacks: Revealing the Secrets of Smart Cards.

Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Compiler Assisted Masking.

Emmanuel Prouff and Matthieu Rivain.
A Generic Method for Secure SBox Implementation.

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013


http://www.springer.com/
http://www.dpabook.org/

That was it. Questions?

Automatic insertion of countermeasures
Countermeasures
Masking
Dual-Rail with Precharge Logic (DPL)
Formally proven countermeasures
Bonus
Master plan
The abstract CPU
What we currently have
Abstract CPU
Symbolic abstract CPU

Example: PRESENT sbox
Example: PRESENT sbox leakages trace

Pablo Rauzy (Telecom ParisTech) Software countermeasures COSADE 2013



	Automatic insertion of countermeasures
	Countermeasures
	Masking
	Dual-Rail with Precharge Logic (dpl)

	Formally proven countermeasures
	Bonus

	Master plan
	The abstract CPU
	What we currently have
	Abstract CPU
	Symbolic abstract CPU


